首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multiple kernel learning using composite kernel functions
【24h】

Multiple kernel learning using composite kernel functions

机译:使用复合内核功能进行多内核学习

获取原文
获取原文并翻译 | 示例

摘要

Multiple Kernel Learning (MKL) algorithms deals with learning the optimal kernel from training data along with learning the function that generates the data. Generally in MKL, the optimal kernel is defined as a combination of kernels under consideration (base kernels). In this paper, we formulated MKL using composite kernel functions (MKLCKF), in which the optimal kernel is represented as the linear combination of composite kernel functions. Corresponding to each data point a composite kernel function is designed whose domain is constructed as the direct product of the range space of base kernels, so that the composite kernels make use of the information of all the base kernels for finding their image. Thus MKLCKF has three layers in which the first layer consists of base kernels, the second layer consists of composite kernels and third layer is the optimal kernel which is a linear combination of the composite kernels. For making the algorithm more computationally effective, we formulated one more variation of the algorithm in which the coefficients of the linear combination are replaced with a similarity function that captures the local properties of the input data. We applied the proposed approach on a number of artificial intelligence applications and compared its performance with that of the other state-of-the-art techniques. Data compression techniques had been used for applying the models on large data, that is, for large scale classification, dictionary learning while for large scale regression pre-clustering approach had been applied. On the basis of the performance, rank was assigned to each model we used for analysis, The proposed models scored higher rank than the other models we used for comparison. We analyzed the performance of the MKLCKF model by incorporating with kernelized locally sensitive hashing (KLSH) also and the results were found to be promising.
机译:多种内核学习(MKL)算法负责从训练数据中学习最佳内核以及学习生成数据的功能。通常,在MKL中,最佳内核定义为正在考虑的内核(基本内核)​​的组合。在本文中,我们使用复合核函数(MKLCKF)制定了MKL,其中最佳核表示为复合核函数的线性组合。对应于每个数据点,设计了一个复合核函数,其域被构造为基础核的范围空间的直接乘积,以便复合核利用所有基础核的信息来查找其图像。因此,MKLCKF具有三层,其中第一层由基本内核组成,第二层由复合内核组成,第三层是最优内核,它是复合内核的线性组合。为了使该算法在计算上更加有效,我们制定了该算法的另一种形式,其中线性组合的系数被捕获输入数据局部属性的相似度函数代替。我们将建议的方法应用于许多人工智能应用,并将其性能与其他最新技术的性能进行了比较。数据压缩技术已用于将模型应用于大数据,即,对于大规模分类,使用了字典学习,而对于大规模回归,则采用了预聚类方法。根据性能,将等级分配给我们用于分析的每个模型,所提出的模型的得分高于我们用于比较的其他模型。我们还通过与内核化的局部敏感哈希(KLSH)结合来分析了MKLCKF模型的性能,发现结果很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号