首页> 外文期刊>Engineering Applications of Artificial Intelligence >Machine-learning based approaches for self-tuning trajectory tracking controllers under terrain changes in repetitive tasks
【24h】

Machine-learning based approaches for self-tuning trajectory tracking controllers under terrain changes in repetitive tasks

机译:在重复任务中地形变化下基于自学习轨迹跟踪控制器的基于机器学习的方法

获取原文
获取原文并翻译 | 示例

摘要

The use of resources in autonomous vehicles when manoeuvring along changing terrain is an issue yet to be faced in the industrial field, such as mining and agriculture, where automated machinery performs repetitive tasks. If the machinery is not capable to overcome such terrain disturbances during its motion, the vehicle spends more energy than the necessary as the motion controller is adapted to the new terramechanical scenario. The latter usually includes a re-tuning of the controller and the corresponding loss of man-hours until obtaining the desired responses. In this context, we propose a self-tuning methodology based on probabilistic approaches and machine learning techniques to improve the performance of the controllers through reducing trajectory tracking errors and control input efforts, as the vehicle repeats its trajectory and learns from the wheel-terrain interaction. Three degree-of-freedom motion controllers are used to test our techniques, although our proposal is not restricted to the nature of such controllers. For the validation of our hypothesis, we considered three tests: one is performed via simulation using a modified kinematic model of the vehicle and slippage constraints, whereas other two extensive trials were carried out in field using an electric vehicle - Twizy, made by Renault - under different types of shaped trajectories and irregular terrain. In particular, two terrains: grass and muddy, and their transitions. The metrics used herein and previously published in the literature have shown that the self-tuning methodologies proposed in this work decreases the trajectory tracking errors up to 18%, saves energy in the effort input of the actuators up 15%, and in general, increases the performance of the controllers up to 22% when compared to efficient manual tuning. The experimental results as well as the statistical analysis of our proposal are presented in detail herein.
机译:当沿着变化的地形进行机动时,在自动驾驶汽车中使用资源是工业领域(如采矿和农业)所面临的一个问题,在这些领域中,自动化机械执行重复的任务。如果机械无法在运动过程中克服这种地形干扰,则由于运动控制器适用于新的地形力学场景,车辆将花费比必要更多的能量。后者通常包括控制器的重新调整和相应的工时损失,直到获得所需的响应为止。在这种情况下,我们提出了一种基于概率方法和机器学习技术的自整定方法,以通过减少轨迹跟踪误差和控制输入努力来提高控制器的性能,因为车辆会重复其轨迹并从车轮-地形交互中学习。三种自由度运动控制器用于测试我们的技术,尽管我们的建议不限于此类控制器的性质。为了验证我们的假设,我们考虑了三项测试:一项是通过使用修改后的运动学模型和滑移约束条件通过仿真进行的,另一项是使用雷诺(Renault)制造的电动车Twizy在野外进行的两项广泛测试。在不同类型的形轨迹和不规则地形下。特别是有两个地形:草和泥泞的地带,以及它们的过渡带。本文中使用的度量标准以及先前在文献中公开的度量标准表明,这项工作中提出的自整定方法将轨迹跟踪误差降低了18%,将执行器的力输入中的能量节省了15%,并且总体上增加了与高效的手动调整相比,控制器的性能高达22%。本文详细介绍了实验结果以及我们建议的统计分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号