首页> 外文期刊>Engineering Applications of Artificial Intelligence >Reinforcement learning based compensation methods for robot manipulators
【24h】

Reinforcement learning based compensation methods for robot manipulators

机译:基于强化学习的机器人操纵器补偿方法

获取原文
获取原文并翻译 | 示例

摘要

Smart robotics will be a core feature while migrating from Industry 3.0 (i.e., mass manufacturing) to Industry 4.0 (i.e., customized or social manufacturing). A key characteristic of a smart system is its ability to learn. For smart manufacturing, this means incorporating learning capabilities into the current fixed, repetitive, task oriented industrial manipulators, thus rendering them 'smart'. In this paper we introduce two reinforcement learning (RL) based compensation methods. The learned correction signal, which compensates for unmodeled aberrations, is added to the existing nominal input with an objective to enhance the control performance. The proposed learning algorithms are evaluated on a 6-DoF industrial robotic manipulator arm to follow different kinds of reference paths, such as square or a circular path, or to track a trajectory on a three dimensional surface. In an extensive experimental study we compare the performance of our learning-based methods with well-known tracking controllers, namely, proportional-derivative (PD), model predictive control (MPC), and iterative learning control (ILC). The experimental results show a considerable performance improvement thanks to our RL-based methods when compared to PD, MPC, and ILC.
机译:从工业3.0(即大规模制造)迁移到工业4.0(即定制或社交制造)的过程中,智能机器人将成为核心功能。智能系统的关键特征是其学习能力。对于智能制造,这意味着将学习功能整合到当前的固定,重复,面向任​​务的工业机械手中,从而使其变得“智能”。在本文中,我们介绍了两种基于强化学习(RL)的补偿方法。补偿未建模像差的学习到的校正信号被添加到现有的标称输入中,目的是增强控制性能。在6自由度工业机器人操纵器手臂上对提出的学习算法进行了评估,以遵循不同种类的参考路径,例如正方形或圆形路径,或在三维表面上跟踪轨迹。在广泛的实验研究中,我们将基于学习的方法与著名的跟踪控制器(即比例微分(PD),模型预测控制(MPC)和迭代学习控制(ILC))的性能进行了比较。与PD,MPC和ILC相比,由于我们基于RL的方法,实验结果显示出了显着的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号