首页> 外文期刊>IEEE Transactions on Control Systems Technology >Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty
【24h】

Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty

机译:具有模型不确定性的非完整轮式移动机器人的自适应神经滑模控制

获取原文
获取原文并翻译 | 示例

摘要

This brief proposes an adaptive neural sliding mode control method for trajectory tracking of nonholonomic wheeled mobile robots with model uncertainties and external disturbances. The dynamic model with model uncertainties and the kinematic model represented by polar coordinates are considered to design a robust control system. Self recurrent wavelet neural networks (SRWNNs) are used for approximating arbitrary model uncertainties and external disturbances in dynamics of the mobile robot. From the Lyapunov stability theory, we derive online tuning algorithms for all weights of SRWNNs and prove that all signals of a closed-loop system are uniformly ultimately bounded. Finally, we perform computer simulations to demonstrate the robustness and performance of the proposed control system.
机译:简要介绍了一种具有模型不确定性和外部干扰的非完整轮式移动机器人轨迹跟踪的自适应神经滑模控制方法。考虑具有模型不确定性的动态模型和以极坐标表示的运动学模型来设计鲁棒控制系统。自递归小波神经网络(SRWNN)用于逼近移动机器人动力学中的任意模型不确定性和外部干扰。从Lyapunov稳定性理论出发,我们推导了针对SRWNN的所有权重的在线调整算法,并证明了闭环系统的所有信号最终均一地有界。最后,我们进行计算机仿真以证明所提出的控制系统的鲁棒性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号