首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations
【24h】

Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations

机译:非线性方程参数化系统近似解的机器学习错误模型

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a machine-learning framework for constructing statistical models of errors incurred by approximate solutions to parameterized systems of nonlinear equations. These approximate solutions may arise from early termination of an iterative method, a lower-fidelity model, or a projection-based reduced-order model, for example. The proposed statistical model comprises the sum of a deterministic regression-function model and a stochastic noise model. The method constructs the regression-function model by applying regression techniques from machine learning (e.g., support vector regression, artificial neural networks) to map features (i.e., error indicators such as sampled elements of the residual) to a prediction of the approximate-solution error. The method constructs the noise model as a mean-zero Gaussian random variable whose variance is computed as the sample variance of the approximate-solution error on a test set; this variance can be interpreted as the epistemic uncertainty introduced by the approximate solution. This work considers a wide range of feature-engineering methods, data-set-construction techniques, and regression techniques that aim to ensure that (1) the features are cheaply computable, (2) the noise model exhibits low variance (i.e., low epistemic uncertainty introduced), and (3) the regression model generalizes to independent test data. Numerical experiments performed on several computational-mechanics problems and types of approximate solutions demonstrate the ability of the method to generate statistical models of the error that satisfy these criteria and significantly outperform more commonly adopted approaches for error modeling. (C) 2019 Elsevier B.V. All rights reserved.
机译:这项工作提出了一种机器学习框架,用于构建通过对非线性方程的参数化系统的近似解决方案而产生的误差的统计模型。例如,可以从早期终止迭代方法,低保真模型或基于投影的缩小阶模型来产生这些近似解决方案。所提出的统计模型包括确定性回归函数模型和随机噪声模型的总和。该方法通过将回归技术从机器学习(例如,支持向量回归,人工神经网络)应用于映射特征(即,诸如残差的采样元素的错误指示符)来构造回归函数模型到近似解决方案的预测错误。该方法将噪声模型构造为平均零高斯随机变量,其方案被计算为测试集上近似解决方案错误的样本方差;这种方差可以被解释为近似解决方案引入的认知不确定性。这项工作考虑了各种特征 - 工程方法,数据集 - 施工技术和回归技术,其目的是确保(1)该特征是便宜的计算,(2)噪声模型呈现低方差(即,低认知引入的不确定性),并(3)回归模型推广到独立的测试数据。对多个计算机构问题和类型的近似解决方案进行的数值实验证明了该方法生成满足这些标准的误差统计模型的能力,并且显着优于更换误差建模方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号