首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations
【24h】

Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations

机译:非线性方程参数化系统近似解的机器学习误差模型

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a machine-learning framework for constructing statistical models of errors incurred by approximate solutions to parameterized systems of nonlinear equations. These approximate solutions may arise from early termination of an iterative method, a lower-fidelity model, or a projection-based reduced-order model, for example. The proposed statistical model comprises the sum of a deterministic regression-function model and a stochastic noise model. The method constructs the regression-function model by applying regression techniques from machine learning (e.g., support vector regression, artificial neural networks) to map features (i.e., error indicators such as sampled elements of the residual) to a prediction of the approximate-solution error. The method constructs the noise model as a mean-zero Gaussian random variable whose variance is computed as the sample variance of the approximate-solution error on a test set; this variance can be interpreted as the epistemic uncertainty introduced by the approximate solution. This work considers a wide range of feature-engineering methods, data-set-construction techniques, and regression techniques that aim to ensure that (1) the features are cheaply computable, (2) the noise model exhibits low variance (i.e., low epistemic uncertainty introduced), and (3) the regression model generalizes to independent test data. Numerical experiments performed on several computational-mechanics problems and types of approximate solutions demonstrate the ability of the method to generate statistical models of the error that satisfy these criteria and significantly outperform more commonly adopted approaches for error modeling. (C) 2019 Elsevier B.V. All rights reserved.
机译:这项工作提出了一种机器学习框架,用于构建非线性方程式参数化系统的近似解所引起的误差统计模型。例如,这些近似解可能来自迭代方法,低保真度模型或基于投影的降阶模型的提早终止。所提出的统计模型包括确定性回归函数模型和随机噪声模型的总和。该方法通过应用来自机器学习的回归技术(例如,支持向量回归,人工神经网络)将特征(即,误差指标,例如残差的采样元素)映射到近似解的预测,从而构建回归函数模型错误。该方法将噪声模型构造为均值零的高斯随机变量,其方差被计算为测试集上近似解误差的样本方差。这种方差可以解释为由近似解引入的认知不确定性。这项工作考虑了各种各样的特征工程方法,数据集构建技术和回归技术,旨在确保(1)这些特征可以廉价地计算,(2)噪声模型表现出低方差(即低认知度) (3)回归模型可归纳为独立的测试数据。对几个计算力学问题和近似解的类型进行的数值实验表明,该方法能够生成满足这些条件的误差统计模型,并明显优于误差建模的更常用方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号