首页> 外文期刊>Artificial life and robotics >Evolving behaviour trees for supervisory control of robot swarms
【24h】

Evolving behaviour trees for supervisory control of robot swarms

机译:用于机器人群的监督控制的不断发展的行为树

获取原文
获取原文并翻译 | 示例

摘要

Supervisory control of swarms is essential to their deployment in real-world scenarios to both monitor their operation and provide guidance. We explore mechanisms by which humans can provide supervisory control to swarms to improve their performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn effective human-readable strategies. Behaviour trees are applied to represent human-readable decision strategies which are produced through evolution. These strategies can be thoroughly tested and can provide knowledge to be used in the future in a variety of scenarios. A simulated set of scenarios are investigated where a swarm of robots have to explore varying environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment using different local swarm behaviours. The evolved behaviour trees are examined in detail alongside swarm simulations to enable clear understanding of the supervisory strategies. We conclude by identifying the strengths in accelerated testing and the benefits of this approach for scenario exploration and training of human operators.
机译:Swarms的监督控制对于他们在现实世界方案中的部署至关重要,以监控其运营并提供指导。我们探索人类可以向群体提供监督控制以提高其性能的机制。而不是人类猜测了正确形式的监督控制,我们使用人工演进来学习有效的人类可读策略。行为树用于代表通过演变产生的人类可读决策策略。这些策略可以彻底测试,可以在各种情况下提供未来使用的知识。调查了模拟的情景集,其中一群机器人必须探索不同的环境和达到目标。使用不同的本地群行为,进化了有效的监督控制策略以探索每个环境。与群体模拟一起检查进化行为树,以明确了解监督策略。我们通过确定加速测试的优势以及这种方法对人类运营商的探索和培训的效益来结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号