首页> 外文期刊>Artificial life and robotics >A robot leg with compliant tarsus and its neural control for efficient and adaptive locomotion on complex terrains
【24h】

A robot leg with compliant tarsus and its neural control for efficient and adaptive locomotion on complex terrains

机译:具有柔顺骨的机器人腿及其神经控制,可在复杂地形上高效且自适应地移动

获取原文
获取原文并翻译 | 示例

摘要

Insects, like dung beetles, show fascinating loco-motor abilities. They can use their legs to walk on complex terrains (e.g., rocky and curved surfaces) and to manipulate objects. They also exploit their compliant tarsi, increasing the contact area between the legs and surface, to enhance locomotion, and object manipulation efficiency. Besides these biomechanical components, their neural control allows them to move at a proper frequency with respect to their biomechanical properties and to quickly adapt their movements to deal with environmental changes. Realizing these complex achievements on artificial systems remains a grand challenge. As a step towards this direction, we present here our first prototype of an artificial dung beetle-like leg with compliant tarsus by analyzing real dung beetle legs through μCT scans. Compliant tarsus was designed according to the so-called fin ray effect. Real robot experiments show that the leg with compliant tarsus can efficiently move on rocky and curved surfaces. We also apply neural control, based on a central pattern generator (CPG) circuit and synaptic plasticity, to autonomously generate a proper moving frequency of the leg. The controller can also adapt the leg movement to deal with environmental changes, like different treadmill speeds, within a few steps.
机译:像甲虫一样,昆虫也表现出令人着迷的运动能力。他们可以用双腿在复杂的地形(例如岩石和弯曲的表面)上行走并操纵物体。他们还利用其柔顺的tarsi,增加了腿部与表面之间的接触面积,以增强运动和物体操纵效率。除了这些生物力学组件外,它们的神经控制还使它们能够根据其生物力学特性以适当的频率运动,并迅速适应运动以应对环境变化。在人工系统上实现这些复杂的成就仍然是一个巨大的挑战。作为朝这个方向迈出的一步,我们在这里展示了我们的第一个人造甲虫样腿的原型,该腿具有柔顺的骨,通过μCT扫描分析了真实的甲虫腿。根据所谓的鳍状射线效应设计柔顺的架。实际的机器人实验表明,具有柔韧性的腿可以在岩石和弯曲的表面上有效地运动。我们还基于中央模式发生器(CPG)电路和突触可塑性应用神经控制来自主生成腿部的适当运动频率。控制器还可以在几步之内使腿部运动适应环境变化,例如不同的跑步机速度。

著录项

  • 来源
    《Artificial life and robotics》 |2016年第3期|274-281|共8页
  • 作者单位

    Embodied AI and Neurorobotics Lab, Centre for BioRobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark;

    Embodied AI and Neurorobotics Lab, Centre for BioRobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark;

    Embodied AI and Neurorobotics Lab, Centre for BioRobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark;

    Centre for BioRobotics,The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark;

    Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany;

    Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany;

    Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel 24118, Germany;

    Embodied AI and Neurorobotics Lab, Centre for BioRobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 5230 Odense, Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Central pattern generator; Bio-inspired robotics; Neural control; Embodiment; Adaptive locomotion; Dung beetle; Fin ray;

    机译:中央模式发生器;受生物启发的机器人;神经控制;实施例;自适应运动粪甲虫;鳍片;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号