首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Neural control and adaptive neural forward models for insect-like energy-efficient and adaptable locomotion of walking machines
【2h】

Neural control and adaptive neural forward models for insect-like energy-efficient and adaptable locomotion of walking machines

机译:神经控制和自适应神经前向模型可实现步行机器的昆虫样节能和适应性运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.
机译:活着的生物(如行走的动物)找到了解决运动控制问题的有趣方法。他们的机芯展现出优雅的印象,包括多功能,节能和适应性强的运动。在过去的几十年中,机器人专家试图通过使用包括机器学习算法,经典工程控制技术和受生物启发的控制机制在内的不同方法,通过人工腿运动系统来模仿这种自然属性。但是,它们的性能水平仍远非自然水平。相比之下,动物的运动机制似乎不仅主要取决于中央机制(中央模式发生器,CPG)和感官反馈(基于情感的控制),而且还取决于内部前向模型(参考副本)。它们在不同动物中的使用程度不同。通常,CPG会组织基本的节奏运动,这些节奏运动由感觉反馈决定,而内部模型则用于感觉预测和状态估计。根据此概念,我们在此介绍自适应神经运动控制,该神经运动控制由具有神经调节作用的CPG机制和基于感觉反馈的局部腿控制机制以及具有有效复制的自适应神经正向模型组成。这种神经闭环控制器使步行机能够执行多种不同的步行模式,包括昆虫般的腿部动作和步态以及节能运动。此外,前向模型允许机器自动适应运动,以应对地形变化,在站立阶段失去地面接触,在挥杆阶段踩踏或撞到障碍物,腿部受伤,甚至促进类似蟑螂的行为攀爬行为。因此,此处呈现的结果表明,所采用的具体化的神经闭环系统可以成为开发强大且适应性强的机器的有力方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号