首页> 外文学位 >Source/drain engineering for extremely scaled MOSFETs.
【24h】

Source/drain engineering for extremely scaled MOSFETs.

机译:适用于超大规模MOSFET的源/漏工程。

获取原文
获取原文并翻译 | 示例

摘要

As MOSFET feature sizes are scaled down to the deep sub-tenth micron regime, serious degradation of MOSFET device performance due to extrinsic elements, including parasitic resistance and capacitance, is one of the challenging issues for high performance, low voltage device design. In particular, careful source/drain (S/D) engineering is necessary for extremely scaled MOSFETs to maximize the intrinsic performance. In our work, high performance source/drain engineered MOSFETs structures are reported to match the requirements depicted in the International Technology Roadmap for Semiconductors (ITRS).; First, bulk MOSFETs design considerations with S/D engineered structure are presented with a Source/Drain on Insulator (SDOI) structure for high performance application with less parasitics. A self-align double spacer process to fabricate SDOI device is proposed and process feasibility is discussed. Design guideline and potential performance gain with the SDOI structure are also discussed. Secondly, design considerations with silicon-on-insulator (SOI) source/drain engineered structure are discussed and a Self-Align Recessed Source Drain (ReS/D) Ultra-Thin Body SOI MOSFETs is designed. The ReS/D structure provides more design flexibility with parasitic source/drain resistance and gate-to-drain miller capacitance. Fabrication details and experimental results are presented. The scalability of the ReS/D MOSFETs and the larger design window due to reduced parasitics are demonstrated. Finally, source/drain engineering structure with contact design schemes for doublegate (DG) technologies to enhance the current drive ability and to provide larger design flexibility are discussed. FinFET with side contact scheme shows more potential benefit over conventional top contact scheme to push the CMOS device scaling to its limit.
机译:随着MOSFET的特征尺寸缩小到十分之一亚微米以下,由于诸如寄生电阻和电容之类的非本征元素而导致的MOSFET器件性能的严重下降是高性能,低压器件设计面临的挑战之一。尤其是,对于超大规模MOSFET以便最大化固有性能,必须进行仔细的源/漏(S / D)工程设计。在我们的工作中,据报道,高性能的源/漏工程MOSFET结构符合国际半导体技术路线图(ITRS)中描述的要求。首先,提出了采用S / D工程结构的体MOSFET设计注意事项,并采用了源/漏绝缘体(SDOI)结构,以实现具有较少寄生的高性能应用。提出了一种自对准双垫片工艺制造SDOI器件的方法,并讨论了其可行性。还讨论了使用SDOI结构的设计指南和潜在的性能提升。其次,讨论了绝缘体上硅(SOI)源/漏工程结构的设计注意事项,并设计了自对准隐式源漏(ReS / D)超薄体SOI MOSFET。 ReS / D结构具有寄生源极/漏极电阻和栅极至漏极米勒电容,可提供更大的设计灵活性。介绍了制造细节和实验结果。演示了ReS / D MOSFET的可扩展性和由于减少寄生效应而带来的更大设计窗口。最后,讨论了采用双栅极(DG)技术的接触设计方案的源/漏工程结构,以增强电流驱动能力并提供更大的设计灵活性。与传统的顶部接触方案相比,具有侧面接触方案的FinFET具有更大的潜在优势,可将CMOS器件的尺寸推向极限。

著录项

  • 作者

    Zhang, Zhikuan.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号