首页> 外文期刊>IEEE Transactions on Electron Devices >Computational Study of Geometrical Designs for Source/Drain Contacts to Reduce Parasitic Resistance in Extremely Scaled MOSFETs
【24h】

Computational Study of Geometrical Designs for Source/Drain Contacts to Reduce Parasitic Resistance in Extremely Scaled MOSFETs

机译:用于减小极小尺寸MOSFET的源极/漏极触点的几何设计的计算研究,以降低其寄生电阻

获取原文
获取原文并翻译 | 示例
       

摘要

Comprehensive simulation results are reported for the source/drain (S/D) geometry effects on the drive current of various n-type (Si, In0.53Ga0.47As, Ge) and p-type (Si, Ge) metal-oxide-semiconductor field-effect transistors (MOSFETs). Full-band Monte Carlo (MC) simulations are run for different S/D structures ("raised" versus "lateral") at a relevant International Technology Roadmap on Semiconductors node (gate length 14 nm). The "lateral" S/D gives higher drive currents (lower parasitic resistance) than the "raised" S/D because carriers do not need to make large momentum changes through scattering to get injected into the channel or to get collected by the drain, unlike in the "raised" S/D where 90 degrees-turns are required. The S/D geometry effect is significant for novel materials with light effective mass and low scattering rate (e.g., similar to 20% on-current change in In0.53Ga0.47As) while it is still not negligible (up to similar to 5%) for conventional Si. The effect is more pronounced with small contact resistivity and low-S/D doping density. The classical model (drift-diffusion) captures only a part of the S/D geometry effect. In MOSFET benchmarking for future technology nodes, it should be critical to consider the S/D structure effect using rigorous models (such as MC) to correctly project the drive current performance, especially for novel materials with high mobility.
机译:针对源/漏(S / D)几何形状对各种n型(Si,In0.53Ga0.47As,Ge)和p型(Si,Ge)金属氧化物的驱动电流的影响,提供了综合的仿真结果。半导体场效应晶体管(MOSFET)。在半导体节点上的相关国际技术路线图(栅极长度14 nm)上,针对不同的S / D结构(“凸起”与“侧面”)运行了全波段蒙特卡洛(MC)仿真。 “横向” S / D比“上升” S / D提供更高的驱动电流(更低的寄生电阻),因为载流子不需要通过散射进行大的动量变化就可以注入通道或收集与“凸起” S / D中需要90度转弯的情况不同。 S / D几何效应对于具有轻有效质量和低散射率(例如,In0.53Ga0.47As中的20%导通电流变化相似)的新型材料非常重要,但仍然可以忽略不计(高达5%) )用于常规Si。在较小的接触电阻率和低S / D掺杂密度的情况下,效果更为明显。经典模型(漂移扩散)仅捕获S / D几何效果的一部分。在针对未来技术节点的MOSFET基准测试中,使用严格的模型(例如MC)来考虑S / D结构效应以正确预测驱动电流性能至关重要,尤其是对于具有高迁移率的新型材料而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号