首页> 外文学位 >Room temperature gas sensing using pure and modified metal oxide nanowires.
【24h】

Room temperature gas sensing using pure and modified metal oxide nanowires.

机译:使用纯净和改性的金属氧化物纳米线进行室温气体传感。

获取原文
获取原文并翻译 | 示例

摘要

Recently, various quasi 1D metal oxide semiconductor nanostructures (nanorods, nanowires, nanotubes, nanobelts) of various binary oxides have been found to be excellent materials for gas sensing. However, some of the sensitive gas sensors can work only at elevated temperatures. The sensing performance can be further improved when these oxides are doped with noble metal nanoparticles and form hetero-junction with other oxides, especially different types of metal oxide. These modifications can substantially change the surface properties as well as electronic properties due to their enhancement of the depletion layer at the metal nanoparticle-metal oxide nanowire and homo/hetero-interfaces.;The objective of this dissertation study is to investigate the sensing performance of WO3, ZnO, NiO and TiO2 nanowires towards various air pollutant gases such as NH3, NO2, H 2S and CO at room temperature. The sensing performance of pure metal oxide nanowires are further improved by doping these nanowires with noble metal nanoparticles and through the formation of n-p hetero-junction of two dissimilar oxides.;Based on this study, it was found that pure ZnO and NiO nanowires show a high sensitivity and the best selectivity performance towards the ppm level NO2 (1 ppm) with respect to other interfering gases. On the other hand, both WO3/Ag and WO3-NiO gas sensors show enhanced sensing and highly selective performance towards H2S (∼10ppm) at room temperature. Additionally, sensor response and recovery become faster with WO3/Ag than pure WO3 nanowires. The plausible reasons for such improvements with these surface modifications are discussed. This study provides a scientific foundation to engineer practical room-temperature gas sensors with enhanced performance.
机译:近来,已发现各种二元氧化物的各种准一维金属氧化物半导体纳米结构(纳米线,纳米线,纳米管,纳米带)是用于气敏的优良材料。但是,某些敏感的气体传感器只能在高温下工作。当这些氧化物掺杂有贵金属纳米颗粒并与其他氧化物,尤其是不同类型的金属氧化物形成异质结时,可以进一步提高感测性能。由于这些修饰增强了金属纳米粒子-金属氧化物纳米线和均相/异质界面上的耗尽层,因此可以显着改变表面性质和电子性质。本研究的目的是研究金属的感测性能。 WO3,ZnO,NiO和TiO2纳米线在室温下通向各种空气污染物气体,例如NH3,NO2,H 2S和CO。通过用贵金属纳米粒子掺杂这些纳米线并通过形成两种不同氧化物的np异质结,可以进一步提高纯金属氧化物纳米线的感测性能。基于此研究发现,纯ZnO和NiO纳米线显示出相对于其他干扰气体,对ppm级NO2(1 ppm)具有高灵敏度和最佳选择性。另一方面,WO3 / Ag和WO3-NiO气体传感器在室温下均表现出增强的对H2S(〜10ppm)的传感和高度选择性的性能。另外,与纯WO3纳米线相比,WO3 / Ag的传感器响应和恢复速度更快。讨论了通过这些表面改性进行此类改进的合理原因。该研究为设计实用的具有增强性能的室温气体传感器提供了科学依据。

著录项

  • 作者

    Wang, Yale.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号