首页> 外文会议>International Workshop on Junction Technology >Molecular Carbon Implant Technology for Ultra-Shallow Junction Formation and n-MOSFET Strain Application in a 40nm Node Logic Device
【24h】

Molecular Carbon Implant Technology for Ultra-Shallow Junction Formation and n-MOSFET Strain Application in a 40nm Node Logic Device

机译:用于40nM节点逻辑装置的超浅结形成和N-MOSFET应变应用的分子碳植入技术

获取原文

摘要

We investigated molecular carbon (C_(16)H_(10)) implant as a replacement for both a monomer carbon co-implant as well as a Ge pre-amorphization step for ultra-shallow junction (USJ) formation in a p-MOSFET SDE doping process in a 40nm logic device. Carbon is often used in the p-FET extension sequence because it reduces transient enhanced diffusion (TED) by trapping silicon interstitials. However, a Ge pre-amorphization implant (PAI) is still required because C is too light to self-amorphize under most conditions. The use of molecular carbon opens the possibility of eliminating the Ge PAI, which is known to leave residual end of range damage leading to junction leakage. As device scaling continues previously acceptable implant technologies for p-FET source/drain extensions (SDE) are struggling to meet advanced device requirements. We report device results showing that a single implant of C_(16)H_(10) can effectively replace a two step Ge + C implant sequence. We also studied the combination of C_(16)H_(10), and B_(18)H_(22) at various energies, beam currents, and doses in terms of R_s-X_j under different advanced annealing schemes. We have also investigated the possibility of using a different molecular carbon (C7H7) for n-MOSFET drive current enhancement through the formation of a Si:C stressor in the n-MOSFET source/drain (SD) region. Comparisons of XRD and Rs of the molecular carbon implanted samples from different process flow arrangements were made to identify the proper sequence of implants and anneals. Using a blanket wafer test, we demonstrated that molecular carbon implant produces a thick enough amorphous layer for high incorporation of carbon on the silicon lattice. The optimal location and distribution of high carbon concentration regions, which give the highest strain and least impact in SD Rs were determined. C_7H_7 was implanted into the SD region of a 40nm logic n-MOSFET to verify the results from the blanket wafer test.
机译:我们研究了分子碳(C_(16)H_(10))植入物作为单体碳共植入的替代物以及用于P-MOSFET SDE中的超浅接线(USJ)形成的GE预混合步骤在40nm逻辑器件中掺杂过程。碳通常用于P-FET延伸序列,因为它通过捕获硅质间质性来降低瞬态增强的扩散(TED)。然而,仍然需要GE预先植入植入物(PAI),因为C在大多数条件下C太光以自主体。分子碳的使用打开了消除GE PAI的可能性,这已知已知将剩余的损坏损坏导致结泄漏的损坏。由于设备缩放继续先前可接受的P-FET源/漏极扩展(SDE)的可接受的植入技术正在努力满足先进的设备要求。我们报告了设备结果,表明C_(16)H_(10)的单个植入物可以有效地替换两步GE + C植入序列。我们还研究了各种能量,光束电流的C_(16)H_(10)和B_(18)H_(22)的组合,以及在不同的先进退火方案下的R_S-X_J方面的剂量。我们还研究了通过在N-MOSFET源/漏极(SD)区域中的Si:C应力源的Si:C应力源来使用不同分子碳(C7H7)来使用不同的分子碳(C7H7)的可能性。进行了来自不同工艺流程排列的分子碳植入样品的XRD和Rs的比较,以鉴定适当的植入物和退火序列。使用橡皮布晶片试验,我们证明了分子碳植入物产生足够厚的无定形层,用于高掺入硅晶格上的碳。确定了高碳浓度区域的最佳位置和分布,其给出了SD RS最高菌株和最小影响。将C_7H_7植入到40nm逻辑N-MOSFET的SD区域中,以验证橡皮布晶片测试的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号