首页> 外文会议>International Conference on Electronic Packaging Technology and High Density Packaging >Thermo-mechanical design and optimization of micro copper pillar bump for electrical interconnection in 2.5D IC integration
【24h】

Thermo-mechanical design and optimization of micro copper pillar bump for electrical interconnection in 2.5D IC integration

机译:2.5D IC集成电互连微铜柱凸块的热机械设计与优化

获取原文

摘要

Micro copper pillar bumps (μCPBs) have been an important electrical interconnect method for fine pitch I/O applications such as 2.5D IC integration. The thermal stress induced by the coefficient of thermal expansion (CTE) mismatch between a Cu/low-k silicon die, micro copper pillar bump and through silicon via (TSV) based silicon interposer is a significant reliability issue for 2.5D IC integration. During the whole IC packaging process, the Cu/low-k silicon interconnected with silicon interposer through μCPBs will undergo three times of lead-free reflow process: a. the first level assembly between Cu/low-k silicon die and silicon interposer wafer, b. the second level component assembly between the silicon interposer and organic substrate, c. the third level assembly between the component and printed circuit board (PCB). In order to investigate the stress distribution in the fragile low-k layer of silicon die, parametric finite element analysis (FEA) was carried out respectively for each of the three reflow processes. In finite element models of this paper, the μCPBs were used to realize the first level interconnection between a 5.1mm×5.1mm Cu/low-k die with a 50μm bump pitch of total 10404 I/O and a silicon interposer, and underfilling was carried out after both the first reflow and the second reflow process. The influence of different parameters/factors on the stress distribution is simulated. Results show that relatively thinner die thickness, larger bump diameter, larger PI opening, thinner PI thickness and smaller Al pad diameter may contribute to the low stress in the low-k layer during the reflow processes.
机译:微铜柱凸块(μ cpbs)是一个重要的电气互连方法,用于细间距I / O应用,如2.5d IC集成。由Cu / Low-K硅模具,微铜柱凸块和通过硅通孔(TSV)硅插入器之间的热膨胀系数(CTE)失配引起的热应力是2.5D IC集成的显着可靠性问题。在整个IC包装过程中,Cu / Low-K硅通过硅插入器通过&#x03bc互连。CPB将经过三次无铅回流过程:a。 Cu / Low-K硅模具和硅插入晶片之间的第一级组装,B。硅中介层和有机基材之间的第二水平组件C。组件和印刷电路板(PCB)之间的第三级装配。为了研究硅模具脆弱的低k层中的应力分布,分别针对三种回流方法中的每一个进行参数化有限元分析(FEA)。在本文的有限元模型中,μ cpbs用于实现5.1mm&#x00d7之间的第一级互连; 5.1mm cu / low-k与50μ m凹凸音高总计10404 i /○和硅插入物,在第一回流和第二回流过程中进行底部填充物。模拟了不同参数/因素对应力分布的影响。结果表明,相对较薄的模具厚度,较大的凸块直径,较大的PI打开,较薄的PI厚度和较小的Al焊盘直径可能有助于回流过程中的低k层中的低应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号