首页> 外文OA文献 >Silicon nanowires for single slectron transistor fabrication
【2h】

Silicon nanowires for single slectron transistor fabrication

机译:用于单电子晶体管制造的硅纳米线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the minimum feature sizes of current integrated circuits approach 10 nm, improvementsudin the speed, complexity and packing density are becoming increasingly difficult. In particular,udat these scale, the operation of `classical' complementary metal-oxide-semiconductorud(CMOS) devices is expected to degrade unacceptably. Single-electron devices, where theudCoulomb blockade effect can be used to control charge at the one electron level, provideuda means to fabricate large scale integration (LSI) circuits with ultra-low power consumption,udimmunity from charge fluctuations, and high scalability at sub-10 nm dimensions.udSingle-electron devices are potentially a successor technology to conventional classical Siudmetal-oxide-semiconductor field effect transistors (MOSFETs), and will play an increasinglyudimportant role both in future CMOS and `beyond CMOS' technologies.udIn this thesis, we first introduce the history of single-electron (SE) effects and the previousudwork in both theory and practical fabrication. Subsequently, the theoretical operationudof the single-electron transistor (SET) is discussed, followed by a brief introduction to theudquantum dot (QD) and the multiple tunnel junction (MTJ) transistor. The fabricationudprocess for SET devices in heavily doped, n-type silicon-on-insulator (SOI) material, usingudthe electron-beam lithography (EBL), is then introduced. Two types of Si SET devicesudhave been studied, the 1 μm nanowire (NW) SET and `point gate' SET, which are bothuddefined by EBL followed by reactive-ion etching (RIE) to create trench isolation of theuddevices, source, drain and nanowire regions. A thermal oxidation approach, was then usedudto reduce the Si core to the sub-10 nm scale in the NW. This passivates surface defects,udcreates charging 'islands' isolated by tunnel barriers and forms the SET. Variation in surfaceudroughness, doping concentration and any disorder inherent at the nanoscale can formudthe tunnel barriers con ning the charging island. The SiNW SETs fabricated in this workudhave been electrically characterised at temperatures from 8 - 300 K. Results obtained from NWs with core widths from 5 nm to 40 nm with two di erent gate lengths of 1 μmudto 50 nm have been compared. Here, detailed Ids vs. Vds, Vgs measurements have beenudperformed at 8 K, and `Coulomb diamond' characteristics have been observed. The 1 μmudlong NWs behave as MTJs, with 40 nm scale islands. Here, the width of the Coulombuddiamond cannot be reduced to zero. The detailed temperature dependence of the Ids vs.udVds characteristics show that some SE effects persist even at 300 K. The reduction inudNW gate length to 50 nm reduces the likelihood of quantum dots to only three dots, butudincreases their influence on the electrical characteristics. In the point contact device, QDudbehaviour with a combination of SE charging and quantum confinement effects is observedudat 8 K. In a highly scaled point circuit Coulomb blockade and a single-electron oscillationudare observed. Monte Carlo simulations have been used to further investigate the devicesudand their island con gurations. The results of this thesis demonstrate explicitly the signicance of quantum effects for the electrical performance of nominally `classical' SiNWuddevices and highlight their potential for quantum effect `beyond CMOS' devices.
机译:随着当前集成电路的最小特征尺寸接近10nm,改善速度,复杂性和封装密度变得越来越困难。特别是,尽管达到了这些规模,但预计“经典”互补金属氧化物半导体 ud(CMOS)器件的工作性能将下降到不可接受的程度。单电子器件可以使用udCoulomb阻挡效应来控制一个电子级的电荷,从而提供了一种制造具有超低功耗,不受电荷波动影响的大规模集成(LSI)电路的手段。在低于10 nm的尺寸上具有很高的可扩展性。 ud单电子器件可能是传统的传统Si udmetal-氧化物半导体场效应晶体管(MOSFET)的后继技术,并且在未来的CMOS和`在本文中,我们首先介绍了单电子(SE)效应的历史以及理论和实际制造中的先前工作。随后,讨论了单电子晶体管(SET)的理论操作,然后简要介绍了量子点(QD)和多隧道结(MTJ)晶体管。然后介绍了使用电子束光刻(EBL)在重掺杂n型绝缘体上硅(SOI)材料中制造SET器件的过程。已经研究了两种类型的Si SET器件:1μm纳米线(NW)SET和“点栅” SET,两者均由EBL定义,然后由反应离子刻蚀(RIE)来创建uddevice的沟槽隔离,源极,漏极和纳米线区域。然后使用热氧化方法将NW中的Si核还原到10 nm以下。这样可以钝化表面缺陷, ud创建被隧道势垒隔离的带电“岛”并形成SET。表面粗糙度,掺杂浓度以及纳米级固有的任何无序的变化都可以形成 uding构成电荷岛的隧道势垒。在这项工作中制造的SiNW SETs在8-300 K的温度下具有电学特性。比较了从核宽为5 nm至40 nm,两个不同的栅极长度为1μm至50 nm的NW获得的结果。在此,详细的Id与Vds,Vgs的测量在8 K时表现不佳,并且观察到“库仑菱形”特征。 1μm udlong NW表现为MTJ,具有40 nm尺度的岛。在此,库仑 uddiamond的宽度不能减小为零。 Ids vs. udVds特性的详细温度依赖性表明,即使在300 K时,某些SE效应仍然存在。 udNW栅极长度减小到50 nm会使量子点的可能性减少到只有三个点,但是 ud增加了它们对量子点的影响电气特性。在点接触装置中,观察到QD 结合了SE电荷和量子约束效应,其行为为8K。在高度缩放的点电路中,库仑阻塞和单电子振荡被观察到。蒙特卡洛模拟已用于进一步研究设备及其岛配置。本文的结果清楚地证明了量子效应对名义上“经典” SiNW ud器件的电性能的重要性,并强调了其潜在的超越CMOS器件的量子效应。

著录项

  • 作者

    Wang Chen;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号