首页> 外文OA文献 >A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.
【2h】

A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.

机译:一种用于MOOC中与内容相关的自动问答的本体学习的数据挖掘方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the questionanswering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbookend of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexingapproaches are: unigram-based, concept-based and hierarchical concept indexing.The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and randomforests classifiers achieved the best result among the tested classifiers.
机译:大规模开放在线课程(MOOC)的出现使大量注册者可以注册这些MOOC。这项研究旨在为MOOC注册者提供与内容相关的自动反馈,以满足他们的认知需求。提出了一个框架,该框架由三个模块组成,分别是主题本体学习模块,短文本分类模块和提问模块。与先前的研究不同,为识别本体学习的相关概念,使用了正则表达式解析器方法。同样,相关概念是从非结构化文档中提取的。为了建立概念层次结构,使用了一种常见的模式挖掘方法,该方法由启发式功能指导,以确保同级概念在层次结构中处于同一级别。由于此过程不需要特定的词汇或句法信息,因此可以应用于任何主题。为了验证该方法,将所得的本体用于问答系统中,该系统分析学生与内容相关的问题并为其生成答案。章节问题/答案的教科书末尾用于验证问题解答系统。将所得的本体与Text2Onto在问答系统中的使用进行了比较,并获得了令人满意的结果。最后,在MOOC论坛讨论数据中对短文本进行分类时,研究了基于主题本体的不同索引方法。实验结果表明,基于本体的特征索引方法的性能优于基于字母组合的索引方法。实验在二进制分类和多标签分类设置中进行。结果是一致的,并且表明分层概念索引优于基于概念的索引和基于字母组合的索引。在测试的分类器中,BAGGING和randomforests分类器获得了最佳结果。

著录项

  • 作者

    Shatnawi Safwan;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号