首页> 外文期刊>Expert Systems with Application >Toward intelligent data warehouse mining: An ontology-integrated approach for multi-dimensional association mining
【24h】

Toward intelligent data warehouse mining: An ontology-integrated approach for multi-dimensional association mining

机译:迈向智能数据仓库挖掘:多维关联挖掘的本体集成方法

获取原文
获取原文并翻译 | 示例

摘要

A data warehouse is an important decision support system with cleaned and integrated data for knowledge discovery and data mining systems. In reality, the data warehouse mining system has provided many applicable solutions in industries, yet there are still many problems causing users extra problems in discovering knowledge or even failing to obtain the real and useful knowledge they need. To improve the overall data warehouse mining process, we present an intelligent data warehouse mining approach incorporated with schema ontology, schema constraint ontology, domain ontology and user preference ontology. The structures of these ontologies are illustrated and how they benefit the mining process is also demonstrated by examples utilizing rule mining. Finally, we present a prototype multidimensional association mining system, which with intelligent assistance through the support of the ontologies, can help users build useful data mining models, prevent ineffective pattern generation, discover concept extended rules, and provide an active knowledge re-discovering mechanism.
机译:数据仓库是重要的决策支持系统,其中包含用于知识发现和数据挖掘系统的干净和集成的数据。实际上,数据仓库挖掘系统已经为行业提供了许多适用的解决方案,但是仍然存在许多问题,导致用户在发现知识甚至无法获得他们所需的真实和有用知识方面遇到额外的问题。为了改善整个数据仓库的挖掘过程,我们提出了一种智能数据仓库挖掘方法,该方法结合了模式本体,模式约束本体,域本体和用户偏好本体。通过使用规则挖掘的示例说明了这些本体的结构,并说明了它们如何使挖掘过程受益。最后,我们提出了一个原型的多维关联挖掘系统,该系统在本体的支持下提供智能协助,可以帮助用户建立有用的数据挖掘模型,防止无效的模式生成,发现概念扩展规则并提供主动的知识重新发现机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号