Stroke is a loss of brain function caused by a disturbance on the blood supply to the brain. The main consequence of a stroke is a serious long-term disability, and it affects millions of people around the world every year. Motor recovery after stroke is primarily based on physical therapy and the most common rehabilitation method focuses on the task specific approach. Gait is one of the most important daily life activity affected in stroke victims, leading to poor ambulatory activity. Therefore, much effort has been devoted to improve gait rehabilitation.Traditional gait therapy is mostly based on treadmill training, with patient’s body weight partially supported by a harness system. Physical therapists need to manually assist patients in the correct way to move their legs. However, this technique is usually very exhausting for therapists and, as a result, the training duration is limited by the physical conditions of the therapists themselves. Moreover, multiple therapists are required to assist a single patient on both legs, and it is very difficult to coordinate and properly control the body segments of interest.In order to help physical therapists to improve the rehabilitation process, robotic exoskeletons can come into play. Robotics exoskeletons consist of mechatronic structures attached to subject’s limbs in order to assist or enhance movements. These robotic devices have emerged as a promising approach to restore gait and improve motor function of impaired stroke victims, by applying intensive and repetitive training. However, active subject participation during the therapy is paramount to many of the potential recovery pathways and, therefore, it is an important feature of the gait training. To this end, robotics devices should not impose fixed limb trajectories while patient remains passive.These have been the main motivations for the research of this dissertation. The overall aim was to generate the necessary knowledge to design, develop and validate a novel lower limb robotic exoskeleton and an assist-as-needed therapy for gait rehabilitation in post-stroke patients. Research activities were conducted towards the development of the hardware and the control methods required to prove the concept with a clinical evaluation.The first part of the research was dedicated to design and implement a lightweight robotic exoskeleton with a comfortable embodiment to the user. It was envisioned as a completely actuated device in the sagittal plane, capable of providing the necessary torque to move the hip, knee and ankle joints through the walking process. The device, that does not extend above mid-abdomen and requires nothing to be worn over the shoulders or above the lower back, presumably renders more comfort to the user. Furthermore, the robotic exoskeleton is an autonomous device capable of overground walking, aiming to motivate and engage patients by performing gait rehabilitation in a real environment.The second research part was devoted to implement a control approach that assist the patient only when needed. This method creates a force field that guides patient’s limb in a correct trajectory. In this way, the robotic exoskeleton only applies forces when the patient deviates from the trajectory. The force field provides haptic feedback that is processed by the patient, thus leading to a continuous improvement of the motor functions.Finally, research was conducted to evaluate the robotic exoskeleton and its control approach in a clinical study with post-stroke patients. This study aimed to be a proof-of-concept of all design and implementation applied to a real clinical rehabilitation scenario.Several aspects were evaluated: the robotic exoskeleton control performance, patients’ attitudes and motivation towards the use of the device, patients’ safety and toleranceto the intensive robotic training and the impact of the robotic training on the walking function of the patients.Results have shown that the device is safe, easy to use and have positive impact on walking functions. The patients tolerated the walking therapy very well and were motivatedby training with the device. These results motivate further research on overground walking therapy for stroke rehabilitation with the robotic exoskeleton.The work presented in this dissertation comprises all the way from the research to implementation and evaluation of a final device. The technology resulting from the work presented here has been transferred to a spin-o↵ company, which is now commercializing the device in different countries as a research tool to be used in clinical studies.
展开▼