首页> 外文OA文献 >Reactive obstacle avoidance for the REMUS Autonomous Underwater Vehicle utilizing a forward looking sonar
【2h】

Reactive obstacle avoidance for the REMUS Autonomous Underwater Vehicle utilizing a forward looking sonar

机译:使用前视声纳的REMUS自主水下航行器的反应性避障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One day fully autonomous AUV's will no longer require human interactions to complete its missions. To make this a reality, the AUV must be able to safely navigate in unfamiliar environments with unknown obstacles. This thesis builds on previous work conducted at NPS's Center for AUV Research to improve the autonomy of the REMUS class of AUVs with an implemented FLS. The first part of this thesis deals with accurate path following with the use of look-ahead pitch calculations. With the use of a SIMULINK model, constraints surrounding obstacle avoidance path planning are then explored, focusing on optimal sensor orientation issues. Two path planning methods are developed to address the issues of a limited sonar field of view and uncertainties brought on by an occlusion area. The first approach utilizes a pop-up maneuver to increase the field of view and minimize the occlusion area, while the second approach creates a path with the addition of a spline. Comparing the two methods, it was concluded that spline addition planner provided a robust optimal obstacle avoidance path and along with the look-ahead pitch controller completes the design of a "back-seat driver" to improve REMUS's survivability in an unknown environment.
机译:一天,完全自主的AUV将不再需要人工干预即可完成其任务。为了实现这一目标,AUV必须能够在未知障碍物不熟悉的环境中安全导航。本论文以在NPS的AUV研究中心进行的先前工作为基础,以通过实施FLS改善REMUS类AUV的自主性。本文的第一部分通过使用前瞻音高计算来处理精确的路径。通过使用SIMULINK模型,然后探索围绕避障路径规划的约束,重点关注最佳传感器方向问题。开发了两种路径规划方法来解决声纳视野受限和遮挡区域带来的不确定性的问题。第一种方法利用弹出操作来增加视野并最小化遮挡区域,而第二种方法则通过添加样条线来创建路径。比较这两种方法,可以得出结论,样条加法规划器提供了可靠的最佳避障路径,并且与前瞻音高控制器一起完成了“后座驱动器”的设计,以提高REMUS在未知环境中的生存能力。

著录项

  • 作者

    Furukawa Tyler H.;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号