首页> 外文OA文献 >Predictive Control of Fast Unstable and Nonminimum-phase Nonlinear Systems
【2h】

Predictive Control of Fast Unstable and Nonminimum-phase Nonlinear Systems

机译:快速不稳定和非最小相位非线性系统的预测控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predictive Control of Unstable Nonminimum-phase Systems K. Guemghar, B. Srinivasan, Ph. Mullhaupt, D. Bonvin ´ Institut d’Automatique, Ecole Polytechnique F´d´rale de Lausanne, ee CH-1015 Lausanne, Switzerland. Predictive control is a very effective approach for tackling problems with constraints and nonlinear dynamics, especially when the analytical computation of the control law is difficult. Standard predictive control involves predicting the system behavior over a prediction horizon and calculating the input that minimizes a criterion expressing the system behavior in the future. Only the first part of the computed input is applied to the system, and this procedure is repeated with the advent of each new measurement. This methodology is widely used in the process industry where system dynamics are sufficiently slow to permit its implementation. In contrast, applications of predictive control to fast unstable dynamic systems are rather limited. Apart from computational considerations, a fundamental limitation arises from the accuracy of that prediction, which can be quite poor due to accumulation of numerical errors if the prediction horizon is large. In this paper, an upper bound on the prediction horizon based on the location of the unstable pole(s) of the linearized system will be provided. The problem becomes more acute when nonminimum-phase systems are considered. Nonminimum phase implies that the system starts in a direction opposite to its reference (inverse response). To control such systems, it is reasonable to predict the maneuvers, thus making predictive control a natural strategy. However, a large prediction horizon is required since it is necessary to look beyond the inverse response. In this context, a lower bound on the prediction horizon based on the location of the unstable zero(s) of the linearized system will be provided. The two bounds mentioned above may lead to the situation where there exist no value of the prediction horizon that can stabilize a given unstable nonmiminum-phase system. For such a case, a combination of tools from differential geometry and predictive control is proposed in this paper. The envisaged procedure has a cascade structure and is outlined below: 1. Using the input-output linearization technique, the nonlinear system is transformed into a linear subsystem and internal dynamics. However, since the original nonlinear system is nonminimum-phase, the internal dynamics are unstable. 2. The linear subsystem is made arbitrarily fast by using a stabilizing high-gain linear feedback (inner-loop). 3. A predictive control scheme is then used to stabilize the slow internal dynamics (outerloop) by manipulating the reference of the inner loop. The stability of the proposed procedure is analyzed using a singular perturbation approach. The results will be illustrated in simulation on a system consisting of an inverted pendulum on a cart. 1
机译:不稳定的非最小相位系统的预测控制K. Guemghar,B。Srinivasan,Ph。Mullhaupt,D。Bonvin´d'Bonvin´Institut d'Automatique,Ecole Polytechnique F´d´rale de Lausanne,ee CH-1015,瑞士洛桑。预测控制是解决约束和非线性动力学问题的一种非常有效的方法,尤其是当对控制律的解析计算很困难时。标准的预测控制涉及在预测范围内预测系统行为,并计算使表示将来系统行为的准则最小化的输入。仅将计算出的输入的第一部分应用于系统,随着每次新测量的到来,都会重复此过程。此方法已广泛用于过程工业,在此过程中,系统动力学非常缓慢,无法实现。相反,预测控制在快速不稳定动态系统中的应用相当有限。除了计算方面的考虑之外,该预测的准确性还产生了基本限制,如果预测范围较大,则由于数值误差的累积,该限制可能会很差。在本文中,将基于线性化系统的不稳定极点的位置提供预测范围的上限。当考虑非最小相位系统时,问题变得更加严重。非最小相位意味着系统以与其参考相反的方向启动(逆响应)。为了控制这样的系统,合理地预测操纵,从而使预测控制成为一种自然策略。但是,由于有必要超越逆响应,因此需要较大的预测范围。在这种情况下,将基于线性化系统的不稳定零点的位置提供预测范围的下限。上面提到的两个界限可能会导致这样一种情况,即不存在可以稳定给定的不稳定非最小相位系统的预测范围的值。对于这种情况,本文提出了将不同几何学和预测控制工具结合在一起的方法。所设想的过程具有级联结构,概述如下:1.使用输入输出线性化技术,将非线性系统转换为线性子系统和内部动力学。但是,由于原始非线性系统是非最小相位的,因此内部动力学不稳定。 2.通过使用稳定的高增益线性反馈(内环),可以使线性子系统任意快。 3.然后,通过控制内循环的参考值,使用预测控制方案来稳定慢速内部动力学(外循环)。使用奇异摄动法分析了所提出程序的稳定性。结果将在由推车上的倒立摆组成的系统上的仿真中进行说明。 1个

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号