首页> 外文OA文献 >Impact of Chemical States on the Effective Work Function of Metal Gate and High-kappa Dielectric Materials on Novel Heterostructures
【2h】

Impact of Chemical States on the Effective Work Function of Metal Gate and High-kappa Dielectric Materials on Novel Heterostructures

机译:化学状态对新型异质结构上金属栅和高κ介电材料有效功函数的影响

摘要

An experimental and theoretical approach is taken to determine the effect of a heterojunction on the effective work function in a metal/high-? gate stack, the characteristics of aqueous hydrochloric acid cleaned (aq-HCl) GaN surface and the interface between GaN and Al2O3, HfO2 and GaON. The investigation of the effect of a heterojunction on the effective work function in a metal/high-? gate stack found that when a Ge/Si heterostructure on silicon is lightly doped and sufficiently thin, the work function can be extracted in a manner similar to that for a simple silicon substrate. Modifications to the terraced oxide structure are proposed to remove oxidation effects of the alternate channel materials. The extracted work function of TiN with various thicknesses on HfSiO is found to be in agreement with that of TiN on a silicon substrate. X-ray and ultraviolet photoelectron spectroscopy are used to observe the interface electronic states at the GaN (0001) and Al2O3, HfO2 and GaON dielectric interfaces. The GaN is cleaned using aqueous HCl prior to thermal oxidation to form GaON and atomic layer deposition of Al2O3 and HfO2. This was followed by a post deposition anneal. The GaN/HfO2 and GaN/Al2O3 interfaces exhibited dipoles of 1.6 eV and 0.4 eV +/- 0.2 eV, respectively. It is determined that the formation of an interfacial layer at the GaN/HfO2 interface is the primary cause of the larger dipole. Due to the knowledge of the formation of an interfacial GaOx or GaON layer during atomic layer deposition of HfO2, a better understanding of the GaN/GaON interface is needed. To accomplish this task, the interface electronic states at the GaN(0001) and GaON interface are observed using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS). XPS and UPS analysis of the GaN/GaON interface resulted in the calculation of a -2.7 eV +/- 0.2 eV dipole assuming that the core level shifts are only representative of the GaN band bending at the interface. If it is assumed that the core level shifts are only due to the oxidation of GaN, then the exhibited dipole at the GaN/GaON interface is -1.8 eV +/- 0.2 eV. Results indicate that the observed dipole is primarily caused by the polarization of the GaN. A theoretical approach is taken to provide a more complete understanding of the underlying formation mechanisms of a GaON interfacial layer during atomic layer deposition of HfO2. First, density functional theory is used to calculate the interactions of oxygen and water with the Ga-face of GaN clusters. The GaN clusters could be used as testbeds for the actual Ga-face on GaN crystals of importance in electronics. The results reveal that the local spin plays an important role in these interactions. It is found that the most stable interactions of O2 and the GaN clusters results in the complete dissociation of the O2 molecule to form two Ga-O-Ga bonds, while the most stable interactions between a H2O molecule and the GaN clusters are the complete dissociation of one of the O-H bonds to form a Ga-O-H bond and a Ga-H bond. Second, density functional theory is used to calculate the interaction of the reactants used to deposit HfO2 and Al2O3 during atomic layer deposition with hydrolyzed Ga-face GaN clusters. The results suggest that while further research is needed in this area to grasp a better understanding of the interactions of Trimethylaluminum (TMA) or Tertrakis(EthylMethylAmino)Hafnium (TEMAH) with hydrolyzed GaN clusters, it is found that a Ga-N(CH3)(CH2CH3) bond can form during the deposition of HfO2 using ALD and TEMAH as the reactant without breaking the Hf-N bond. The formation of a Ga-N(CH3)(CH2CH3) bond is significant because with the introduction of water into the system, the methyl and ethylmethyl groups may react to form a Ga-N-O bond which is believed to be the interfacial oxide found during deposition of HfO2 using ALD on GaN. No Ga-C bond structure formed in any fully optimized stable structure when analyzing the interaction of TMA with hydrolyzed GaN.
机译:采用实验和理论方法来确定异质结对金属/高介电常数中有效功函数的影响。栅堆叠,盐酸水溶液清洁的(aq-HCl)GaN表面以及GaN与Al2O3,HfO2和GaON之间的界面的特性。研究异质结对金属/高介电常数中有效功函数的影响。栅极堆叠发现,当硅上的Ge / Si异质结构轻掺杂且足够薄时,可以类似于简单硅衬底的方式提取功函数。提出了对阶梯状氧化物结构的修饰,以去除替代沟道材料的氧化作用。发现在HfSiO上具有各种厚度的TiN的提取功函数与硅衬底上的TiN的提取功函数一致。 X射线和紫外光电子能谱用于观察GaN(0001)以及Al2O3,HfO2和GaON电介质界面处的界面电子态。在热氧化以形成GaON以及Al2O3和HfO2的原子层沉积之前,先使用HCl水溶液清洁GaN。随后进行沉积后退火。 GaN / HfO2和GaN / Al2O3界面的偶极子分别为1.6 eV和0.4 eV +/- 0.2 eV。已确定在GaN / HfO2界面处形成界面层是较大偶极子的主要原因。由于掌握了在HfO2原子层沉积过程中形成界面GaOx或GaON层的知识,因此需要对GaN / GaON界面有更好的了解。为了完成此任务,使用X射线和紫外光电子能谱(XPS和UPS)观察GaN(0001)和GaON界面的界面电子态。假设核心能级位移仅表示界面处GaN带的弯曲,对GaN / GaON界面的XPS和UPS分析得出-2.7 eV +/- 0.2 eV偶极子。如果假设核心能级变化仅是由于GaN的氧化所致,则在GaN / GaON界面处显示的偶极子为-1.8 eV +/- 0.2 eV。结果表明,观察到的偶极子主要是由GaN的极化引起的。采取了一种理论方法来提供对HfO2原子层沉积过程中GaON界面层的基本形成机理的更完整理解。首先,使用密度泛函理论来计算氧气和水与GaN团簇的Ga面的相互作用。 GaN团簇可以用作电子学中重要的GaN晶体上实际Ga面的试验台。结果表明,局部自旋在这些相互作用中起重要作用。发现O2和GaN团簇之间最稳定的相互作用导致O2分子完全解离形成两个Ga-O-Ga键,而H2O分子与GaN团簇之间最稳定的相互作用是完全解离OH键之一形成一个Ga-OH键和一个Ga-H键。其次,使用密度泛函理论来计算用于沉积HfO2和Al2O3的反应物在原子层沉积过程中与水解的Ga-face GaN团簇的相互作用。结果表明,尽管在此领域需要进一步研究以更好地理解三甲基铝(TMA)或叔烷基(乙基甲基氨基)af(TEMAH)与水解的GaN团簇的相互作用,但发现Ga-N(CH3)在使用ALD和TEMAH作为反应物的HfO2沉积过程中可以形成(CH2CH3)键,而不会破坏Hf-N键。 Ga-N(CH3)(CH2CH3)键的形成意义重大,因为随着向系统中引入水,甲基和乙基甲基可能发生反应形成Ga-NO键,据认为这是在反应过程中发现的界面氧化物。在GaN上使用ALD沉积HfO2分析TMA与水解GaN的相互作用时,在任何完全优化的稳定结构中均未形成Ga-C键结构。

著录项

  • 作者

    Coan Mary;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号