首页> 外文学位 >Systematic evaluation of metal gate electrode effective work function and its influence on device performance in CMOS devices.
【24h】

Systematic evaluation of metal gate electrode effective work function and its influence on device performance in CMOS devices.

机译:系统评估金属栅电极的有效功函数及其对CMOS器件性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

As the CMOS integrated circuits are reduced to the 100-nanometer regime, the conventional SiO2-based gate dielectrics are facing serious scaling challenges. High-k materials are expected to replace SiO 2 as the gate insulator. However, metal gates are coherently needed to replace poly-Si due to the increase in threshold voltage for high-k stacks with poly-Si gates and the poly depletion effect. The challenge in metal gate research is to obtain metals with effective work function (EWF) values of ∼5.0-5.2eV for p-MOS and 4.1-4.3eV for n-MOS. Although EWF should be determined predominately by the vacuum WF of the materials, it is observed that the EWF is different on high-k than on SiO2. One proposed mechanism to limit the EWF tuning on high-k dielectrics, and a possible inherent roadblock to the identification of band-edge metals, is the Fermi-level pinning effect.;Metal gate EWF has been systematically studied with the goal of identifying band-edge metal gate electrode candidates. The terraced oxide technique has been developed as the metric for accurate EWF extraction. A comparison of the literature Fermi-level pinning models with our experimental data shows that an intrinsic limitation (pinning at the high-k charge neutrality level) may not exist and the source of most EWF deviation on high-k is due to extrinsic contributions, such as interfacial reactions. Both the bulk metal characteristics and the interface properties between the metal and dielectric have been found to control overall EWF. Charges can be induced in the gate stack during device processing and shift the flatband voltage (Vfb). Engineering of the EWF by an interface dipole has been identified as a plausible approach for EWF tuning. Aluminum-containing electrode stacks and lanthanide electrode stacks are proposed as potential p-type and n-type metal candidates.;The potential impact of candidate metal systems on device performance and reliability was studied, as well as other materials that may reveal implications for the influence of the electrode on the gate stack. Comparison of the deposition techniques, shows that even physical vapor deposited (PVD) metal electrodes can exhibit high performance. Metals with high O reactivity will reduce the high-k and consequently degrade electron mobility. No long term reliability concerns were observed for the candidate metals.
机译:随着CMOS集成电路的尺寸缩小到100纳米,传统的基于SiO2的栅极电介质正面临着严重的尺寸挑战。高k材料有望代替SiO 2作为栅极绝缘体。然而,由于用于具有多晶硅栅极的高k堆叠的阈值电压的增加和多晶硅耗尽效应,因此相干地需要金属栅极来代替多晶硅。金属栅极研究面临的挑战是获得有效功函数(EWF)值对于p-MOS约为5.0-5.2eV,对于n-MOS约为4.1-4.3eV的金属。尽管EWF主要取决于材料的真空WF,但可以观察到,高k上的EWF与SiO2上的EWF不同。提出的一种限制高k电介质上EWF调谐的机制是费米能级钉扎效应,它是识别带边缘金属的一个固有内在障碍。 -边缘金属栅电极候选物。阶梯状氧化技术已被开发为精确EWF提取的指标。将费米能级固定模型与我们的实验数据进行比较,结果表明可能不存在固有的局限性(固定在高k电荷中性水平上),并且高k上大多数EWF偏差的来源是由于外在因素造成的,例如界面反应。已经发现,块状金属特性和金属与电介质之间的界面特性都可以控制整体EWF。在器件处理过程中,栅极堆叠中可能会感应出电荷,从而使平带电压(Vfb)移动。通过界面偶极子对EWF进行工程设计已被认为是EWF调整的一种可行方法。提出了含铝电极堆和镧系元素电极堆作为潜在的p型和n型金属候选物;研究了候选金属系统对器件性能和可靠性的潜在影响以及可能揭示其潜在影响的其他材料电极对栅堆叠的影响。沉积技术的比较表明,即使是物理气相沉积(PVD)的金属电极也可以表现出高性能。具有高O反应性的金属会降低高k,从而降低电子迁移率。没有观察到候选金属的长期可靠性问题。

著录项

  • 作者

    Wen, Huang-Chun.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号