首页> 外文OA文献 >Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism
【2h】

Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism

机译:基于知识图的药物重新定位对CAVID-19的图表卷积网络与注意机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current global crisis caused by COVID-19 almost halted normal life in most parts of the world. Due to the long development cycle for new drugs, drug repositioning becomes an effective method of screening drugs for COVID-19. To find suitable drugs for COVID-19, we add COVID-19-related information into our medical knowledge graph and utilize a knowledge-graph-based drug repositioning method to screen potential therapeutic drugs for COVID-19. Specific steps are as follows. Firstly, the information about COVID-19 is collected from the latest published literature, and gene targets of COVID-19 are added to the knowledge graph. Then, the information of COVID-19 of the knowledge graph is extracted and a drug–disease interaction prediction model based on Graph Convolutional Network with Attention (Att-GCN) is established. Att-GCN is used to extract features from the knowledge graph and the prediction matrix reconstructed through matrix operation. We evaluate the model by predicting drugs for both ordinary diseases and COVID-19. The model can achieve area under curve (AUC) of 0.954 and area under the precise recall area curve (AUPR) of 0.851 for ordinary diseases. On the drug repositioning experiment for COVID-19, five drugs predicted by the models have proved effective in clinical treatment. The experimental results confirm that the model can predict drug–disease interaction effectively for both normal diseases and COVID-19.
机译:目前的全球危机由Covid-19几乎停止了世界大部分地区的正常生活。由于新药物的长发循环,药物重新定位成为Covid-19的药物筛选药物的有效方法。为了找到Covid-19的合适药物,我们将Covid-19相关信息添加到我们的医学知识图中,并利用基于知识图的药物重新定位方法来筛选Covid-19的潜在治疗药物。具体步骤如下。首先,从最新发表的文献中收集有关Covid-19的信息,并且Covid-19的基因目标被添加到知识图中。然后,提取知识图中的Covid-19的信息,并建立了基于图表卷积网络的药物疾病交互预测模型(ATT-GCN)。 ATT-GCN用于从知识图和通过矩阵操作重建的预测矩阵中提取特征。我们通过预测普通疾病和Covid-19的药物来评估模型。该模型可以在普通疾病的精确召回区域曲线(AUPR)下实现0.954的曲线(AUC)的面积。关于Covid-19的药物重新定位实验,模型预测的五种药物已证明在临床治疗中有效。实验结果证实,该模型可以针对正常疾病和Covid-19预测毒性疾病相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号