首页> 外文期刊>Expert systems with applications >AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction
【24h】

AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction

机译:AGCN:基于关注的图表卷积网络用于药物 - 药物相互作用提取

获取原文
获取原文并翻译 | 示例

摘要

Extracting drug-drug interaction (DDI) relations is one of the most typical tasks in the field of biomedical relation extraction. Automatic DDI extraction from the biomedical corpus is central to the mining of knowledge hidden in the biomedical literature. Existing approaches for DDI extraction primarily focus on either the contextual or the structural information of the sentence, despite their complementary role. Also, previous studies do not even exploit the entire knowledge of the input sentence, which could lead to a loss of crucial clues. In this paper, we propose an Attention-based Graph Convolutional Networks (AGCN) to address these issues. In contrast to the existing DDI extraction methods, the AGCN is designed to leverage contextual and structural knowledge together, where GCN is employed in combination with encoders based on recurrent networks. Additionally, we apply a novel attention-based pruning strategy to optimally use syntactic information while ignoring irrelevant information, in contrast to previous rulebased pruning methods. Therefore, AGCN can take advantage of the context and structure of the input sentence as efficiently as possible. We evaluate our model using a dominant DDI extraction corpus. The experimental results demonstrate the effectiveness of our model, which outperforms existing approaches. (C) 2020 Elsevier Ltd. All rights reserved.
机译:提取药物 - 药物相互作用(DDI)关系是生物医学关系领域中最典型的任务之一。生物医学语料库的自动DDI提取是隐藏在生物医学文献中隐藏的知识的核心。尽管有互补的作用,但DDI提取的现有方法主要关注句子的上下文或结构信息。此外,之前的研究甚至没有利用输入句的整个知识,这可能导致关键线索的丧失。在本文中,我们提出了一种基于关注的图表卷积网络(AGCN)来解决这些问题。与现有的DDI提取方法相比,AGCN旨在利用上下文和结构知识,其中GCN与基于反复网络的编码器结合使用。此外,我们采用了一种新的基于关注的修剪策略,以最佳地使用句法信息,同时忽略无关信息,与之前的预定修剪方法相比。因此,AGCN可以尽可能有效地利用输入句的上下文和结构。我们使用主导DDI提取语料库评估我们的模型。实验结果表明了我们模型的有效性,这优于现有方法。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号