首页> 外文OA文献 >Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods
【2h】

Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods

机译:使用超学习者和高维倾向评分方法对电子医疗数据库的倾向评分预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optimal learner for prediction modeling varies depending on theunderlying data-generating distribution. Super Learner (SL) is a genericensemble learning algorithm that uses cross-validation to select among a"library" of candidate prediction models. The SL is not restricted to a singleprediction model, but uses the strengths of a variety of learning algorithms toadapt to different databases. While the SL has been shown to perform well in anumber of settings, it has not been thoroughly evaluated in large electronichealthcare databases that are common in pharmacoepidemiology and comparativeeffectiveness research. In this study, we applied and evaluated the performanceof the SL in its ability to predict treatment assignment using three electronichealthcare databases. We considered a library of algorithms that consisted ofboth nonparametric and parametric models. We also considered a novel strategyfor prediction modeling that combines the SL with the high-dimensionalpropensity score (hdPS) variable selection algorithm. Predictive performancewas assessed using three metrics: the negative log-likelihood, area under thecurve (AUC), and time complexity. Results showed that the best individualalgorithm, in terms of predictive performance, varied across datasets. The SLwas able to adapt to the given dataset and optimize predictive performancerelative to any individual learner. Combining the SL with the hdPS was the mostconsistent prediction method and may be promising for PS estimation andprediction modeling in electronic healthcare databases.
机译:用于预测建模的最佳学习者根据扰动数据生成分布而变化。超学习者(SL)是一种通用学习算法,它使用交叉验证来选择候选预测模型的“库”中的选择。 SL不限于单个预定模型,而是使用各种学习算法的优势拓展到不同的数据库。虽然SL已被证明在内脏的数量下表现良好,但它尚未在药物病变学和对比度研究中常见的大型电气中央数据库中进行彻底评估。在这项研究中,我们应用了SL的表现,其能够预测使用三个电气中小学数据库来预测治疗分配的能力。我们考虑了一个由非参数和参数模型组成的算法库。我们还考虑了一种新的策略,使得预测建模结合了与高维度的分数(HDP)可变选择算法的SL。使用三个指标评估的预测性能:负对数似然,TheCurve(AUC)下的区域和时间复杂性。结果表明,在预测性能方面,最好的个体算法在数据集中变化。 SLWA能够适应给定的数据集并优化任何单个学习者的预测性能。将SL与HDP组合为最易于的预测方法,并且可能是电子医疗保健数据库中PS估计和规范建模的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号