首页> 外文OA文献 >Decomposition of metal alkylamides, alkyls, and halides at reducible oxide surfaces: mechanism of 'clean-up' during atomic layer deposition of dielectrics onto III-V substrates
【2h】

Decomposition of metal alkylamides, alkyls, and halides at reducible oxide surfaces: mechanism of 'clean-up' during atomic layer deposition of dielectrics onto III-V substrates

机译:可还原氧化物表面上金属烷基酰胺,烷基和卤化物的分解:将电介质原子层沉积到III-V衬底上的“清理”机理

摘要

The pairing of high-k dielectric materials with high electron mobility semiconductors for transistors is facilitated when atomic layer deposition (ALD) is used to deposit the dielectric film. An interfacial cleaning mechanism (‘clean-up’) that results in consumption of semiconductor native oxides and in practically sharp dielectric/semiconductor interfaces has been observed during ALD of Al2O3, HfO2, TiO2, and Ta2O5 with various degrees of success. We undertake a comprehensive study using density functional theory (DFT) to explain differences in the performance of various classes of precursor chemicals in removing native oxide from III-V substrates. The study covers the metals Ta(V), Ti(IV), Zr(IV), Hf(IV), Al(III), Mg(II) combined with methyl, amide, and chloride ligands. Of these, we show that clean-up is most effective when depositing MgO. Clean-up with metal alkylamides has a similar mechanism to clean-up with metal methyls insofar as oxygen is scavenged by the metal. The difference in operation of alkylamide and methyl ligands lies in the affinity of the ligand to the substrate. Alkylamide is shown to be prone to decomposition rather than the migration of the entire ligand evinced by methyl. We investigate the multistep chemical processes associated with decomposition of alkylamide. These processes can also occur during later cycles of high-k ALD and give a chemical vapor deposition (CVD) component to the ALD process. These transformations lead to formation of clean-up products such as aziridine, ethene, N-methyl methyleneimine, hydrogen cyanide, and methane. Some - but not all - of the reactions lead to reduction of surface As2O3 (i.e., clean-up). These results explain the experimentally observed accumulation of metallic arsenic and arsenic suboxide at the interface. Such understanding can help achieve control of oxide-semiconductor interfaces through the appropriate choice of chemical precursor.
机译:当使用原子层沉积(ALD)沉积介电膜时,有助于将高k介电材料与用于晶体管的高电子迁移率半导体配对。在Al2O3,HfO2,TiO2和Ta2O5的ALD过程中,已经观察到一种界面清洁机制(“清理”),该机制导致消耗了半导体天然氧化物并几乎形成了尖锐的介电/半导体界面。我们使用密度泛函理论(DFT)进行了全面的研究,以解释各种类型的前体化学品在从III-V基材中去除天然氧化物的性能差异。这项研究涵盖了金属Ta(V),Ti(IV),Zr(IV),Hf(IV),Al(III),Mg(II)与甲基,酰胺和氯化物配体的结合。其中,我们显示出沉积MgO时清理最有效。在金属被氧清除的范围内,用金属烷基酰胺进行的净化与用金属甲基进行的净化具有相似的机理。烷基酰胺和甲基配体的操作差异在于配体对底物的亲和力。已显示烷基酰胺易于分解,而不是甲基所表明的整个配体迁移。我们研究与烷基酰胺分解有关的多步化学过程。这些过程也可能在高k ALD的后续循环中发生,并为ALD过程提供化学气相沉积(CVD)组件。这些转变导致形成清洁产物,例如氮丙啶,乙烯,N-甲基亚甲基亚胺,氰化氢和甲烷。一些(但不是全部)反应导致表面As2O3的减少(即清除)。这些结果说明了实验观察到的金属砷和低价砷在界面处的积累。这种理解可以通过适当选择化学前驱物来帮助控制氧化物-半导体界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号