首页> 外文OA文献 >Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors
【2h】

Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors

机译:具有纳米压阻的新型三轴微型耳塞压阻加速度计的设计与优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work aims at the advancement of state-of-art accelerometer design and optimization methodology by developing an ear-plug accelerometer for race car drivers based on a novel mechanical principle. The accelerometer is used for the measurements of head acceleration when an injurious event occurs. Main requirements for such sensor are miniaturization (2×2 mm), because the device must be placed into the driver earpiece, and its measurement accuracy (i.e. high sensitivity, low crosstalk and low nonlinearity) since the device is used for safety monitoring purpose.A micro-electro-mechanical system (MEMS)-based (bulk micromachined) piezoresistive accelerometer was selected as enabling technology for the development of the sensor. The primary accelerometer elements that can be manipulated during the design stage are: the sensing element (piezoresistors), the micromechanical structure and the measurements circuit. Each of these elements has been specifically designed in order to maximize the sensor performance and to achieve the miniaturization required for the studied application.To achieve accelerometer high sensitivity and miniaturization silicon nanowires (SiNWs) as nanometer scale piezoresistors are adopted as sensing elements. Currently this technology is at an infancy stage, but very promising through the exploitation of the “Giant piezoresistance effect” of SiNWs. This work then measures the potential of the SiNWs as nanoscale piezoresistors by calculating the major performance indexes, both electrical and mechanical, of the novel accelerometer. The results clearly demonstrate that the use of nanoscale piezoresistors boosts the sensitivity by 30 times in comparison to conventional microscale piezoresistors. A feasibility study on nanowires fabrication by both top-down and bottom-up approaches is also carried out.The micromechanical structure used for the design of the accelerometer is an optimized highly symmetric geometry chosen for its self-cancelling property. This work, for the first time, presents an optimization process of the accelerometer micromechanical structure based on a novel mechanical principle, which simultaneously increases the sensitivity and reduces the cross-sensitivity progressively. In the open literature among highly symmetric geometries no other study has to date reported enhancement of the electrical sensitivity and reduction of the cross-talk at the same time. Moreover the novel mechanical principle represents advancement in the accelerometer design and optimization methodology by studying the influence of a uniform mass moment of inertia of the accelerometer proof mass on the sensor performance. Finally, an optimal accelerometer design is proposed and an optimized measurement circuit is also specifically designed to maximize the performance of the accelerometer.The new proposed accelerometer design is capable of increasing the sensor sensitivity of all axes, in particular the Z-axis increases of almost 5 times in respect to the current state-of-art-technology in piezoresistive accelerometer. This occurs thanks to the particular newly developed approach of combination of beams, proof mass geometry and measurement circuit design, together with the use of silicon nanowires as nanoscale piezoresistors. Furthermore the cross-sensitivity is simultaneously minimized for a maximal performance. The sum of the cross-sensitivity of all axes is equal to 0.4%, well below the more than 5% of the state-of-art technology counterpart reported in the literature. Future work is finally outlined and includes the electro-mechanical characterization of the silicon nanowires and the fabrication of the proposed accelerometer prototype that embeds bottom up SiNWs as nanoscale piezoresistors.
机译:这项工作旨在通过基于新颖的机械原理为赛车手开发耳塞式加速度计,来改进最新的加速度计设计和优化方法。当发生伤害事件时,加速度计用于测量头部的加速度。这种传感器的主要要求是小型化(2×2 mm),因为该设备必须用于安全监控目的,因此必须将其放置在驾驶员听筒中,并且其测量精度也要高(即高灵敏度,低串扰和低非线性)。选择了基于微机电系统(MEMS)的(批量微机械加工)压阻式加速度传感器作为传感器开发的支持技术。在设计阶段可以操作的主要加速度计元件是:传感元件(压敏电阻),微机械结构和测量电路。为了使传感器性能最大化并实现研究应用所需的小型化,这些元件中的每一个都经过了专门设计。为了实现加速度计的高灵敏度和小型化,采用纳米级压敏电阻的硅纳米线(SiNWs)作为传感元件。目前,该技术尚处于起步阶段,但是通过利用SiNW的“大压阻效应”,该技术非常有前途。然后,这项工作通过计算新型加速度计的主要性能指标(包括电气和机械性能)来测量SiNW作为纳米压阻器的潜力。结果清楚地表明,与传统的微尺度压敏电阻相比,使用纳米尺度的压敏电阻可将灵敏度提高30倍。还进行了自上而下和自下而上方法制造纳米线的可行性研究。用于加速度计设计的微机械结构是一种优化的高度对称几何形状,因其自消除特性而被选择。这项工作首次提出了基于新型机械原理的加速度计微机械结构的优化过程,该过程同时提高了灵敏度并逐渐降低了交叉灵敏度。在高度对称的几何体之间的公开文献中,迄今为止,没有其他研究报告同时提高电灵敏度和减少串扰。此外,新颖的机械原理通过研究加速度计检测质量的均匀质量惯性矩对传感器性能的影响,代表了加速度计设计和优化方法的进步。最后,提出了一种最佳的加速度计设计,并且还专门设计了一个优化的测量电路以最大化加速度计的性能。新提出的加速度计设计能够提高所有轴的传感器灵敏度,尤其是Z轴几乎增加了是当前压阻式加速度计的五倍。这要归功于特别新近开发的结合光束,证明质量几何形状和测量电路设计的方法,以及使用硅纳米线作为纳米级压阻器。此外,交叉灵敏度同时最小化以实现最佳性能。所有轴的交叉灵敏度之和等于0.4%,远低于文献中报告的最新技术同类值的5%以上。最后概述了未来的工作,其中包括硅纳米线的机电特性以及拟议的加速度计原型的制造,该加速度计原型将自下而上的SiNW嵌入为纳米级压敏电阻。

著录项

  • 作者

    Messina M.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号