...
首页> 外文期刊>Journal of Intelligent & Robotic Systems: Theory & Application >Biped Locomotion Control through a Biomimetic CPG-based Controller
【24h】

Biped Locomotion Control through a Biomimetic CPG-based Controller

机译:通过基于生物摩托的CPG的控制器进行双层运动控制

获取原文
获取原文并翻译 | 示例
           

摘要

Modern concepts of motor learning favour intensive training directed to the neural networks stimulation and reorganization within the spinal cord, the central pattern generator, by taking advantage of the neural plasticity. In the present work, a biomimetic controller using a system of adaptive oscillators is proposed to understand the neuronal principles underlying the human locomotion. A framework for neural control is presented, enabling the following contributions: a) robustness to external perturbations; b) flexibility to variations in the environmental constraints; and c) incorporation of volitional mechanisms for self-adjustment of gait dynamics. Phase modulation of adaptive oscillators and postural balance control are proposed as main strategies for stable locomotion. Simulations of the locomotion model with a biped robot in closed-loop control are presented to validate the implemented neuronal principles. Specifically, the proposed system for online modulation of previous learnt gait patterns was verified in terrains with different slopes. The proposed phase modulation method and postural balanced control enabled robustness enhancement considering a broader range of slope angles than recent studies. Furthermore, the system was also verified for tilted ground including different slopes in the same experiment and uneven terrain with obstacles. Adaptive Frequency Oscillators, under Dynamic Hebbian Learning Adaptation mechanism, are proposed to build a hierarchical control architecture with spinal and supra spinal centers with multiple rhythm-generating neural networks that drive the legs of a biped model. The proposed neural oscillators are based on frequency adaptation and can be entrained by sensory feedback to learn specific patterns. The proposed biomimetic controller intrinsically generates patterns of rhythmic activity that can be induced to sustain CPG function by specific training. This method provides versatile control, paving the way for the design of experimental motor control studies, optimal rehabilitation procedures and robot-assisted therapeutic outcomes.
机译:通过利用神经可塑性,Motor学习的现代概念赞成脊髓内部刺激和重组的密集训练。在本作本作中,建议使用自适应振荡器系统的仿生控制器来理解人类运动的神经元原理。提出了一个神经控制框架,实现了以下贡献:a)对外部扰动的鲁棒性; b)对环境限制的灵活性; c)纳入步态动态的自我调整的加速机制。建议自适应振荡器和姿势平衡控制的相位调制作为稳定运动的主要策略。介绍了闭环控制中的双层机器人的运动模型的模拟,以验证实施的神经元原理。具体而言,在具有不同斜坡的地形中验证了先前学习的步态图案的拟议的在线调制系统。考虑到最近的研究,所提出的相位调制方法和姿势平衡控制使鲁棒性增强的鲁棒性增强。此外,该系统还被验证用于倾斜的地面,包括同一实验中的不同斜坡和具有障碍物的不均匀地形。建议自适应频率振荡器根据动态Hebbian学习适应机制,建立具有脊柱和超脊髓中心的分层控制架构,具有多个节奏生成的神经网络,驱动了双重模型的腿。所提出的神经振荡器基于频率自适应,并且可以通过感官反馈夹带以学习特定模式。所提出的仿生控制器本质地产生节奏活性的模式,可以通过特定培训来诱导致力于维持CPG功能。该方法提供了多功能控制,为实验电机控制研究的设计,最佳康复程序和机器人辅助治疗结果铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号