...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Study of Charge Distributions and Electrical Properties in GaAs/AlGaAs Single Quantum Well/Nanowire Heterostructures
【24h】

Study of Charge Distributions and Electrical Properties in GaAs/AlGaAs Single Quantum Well/Nanowire Heterostructures

机译:GaAs / Algaas单量子孔/纳米线异质结构中的电荷分布和电性能的研究

获取原文
获取原文并翻译 | 示例
           

摘要

By embedding quantum wells (QWs) in semiconductor nanowires (NWs), the confined electronic states perpendicular to the NW axis as well as free movements along the NW axis can be simultaneously achieved. Among them, AlGaAs NWs are ideal candidates for radial two-dimensional GaAs QWs because of their nearly perfect lattice matching, negligible piezoelectric, and strain effects. A series of studies based on AlGaAs NWs with embedded QWs have revealed novel electronic states and outstanding properties. On the other hand, their electrical properties and underlying mechanism at the nanometer scale have less been reported. Herein, the electrical properties of GaAs QW/AlGaAs NW interfaces are quantitatively characterized via off-axis electron holography. Our results reveal that considerable electrons are confined in the GaAs QW, leaving massive holes distributing at the GaAs/AlGaAs hetero-interfaces. In addition, in combination with the first-principles calculations, the redistribution of charges causing band bending at GaAs/AlGaAs interfaces is calculated, which complies well with our experiment. The quantum confinement effect in this heterostructure due to the introduction of GaAs QW is also revealed, which causes the change of related band gap, leading to blue-shift in photoluminescence (PL) spectra. This work provides insight into the nanometer-scale electrical properties of III-V semiconductor NWs comprising QW, which may shed light on optimizing similar hybrid structures as optoelectronic devices in the future.
机译:通过嵌入在半导体纳米线量子阱(量子阱)(NWS),该密闭电子态垂直于轴线NW以及自由运动沿NW轴可同时实现。其中的AlGaAs纳米线是因为其近乎完美的晶格匹配的径向二维量子阱砷化镓,可以忽略不计压电和应变效应的理想人选。基于纳米线的AlGaAs与量子阱嵌入一系列的研究揭示了新的电子状态和优异的性能。在另一方面,已经报道较少在纳米尺度的电性能和作用机制。这里,砷化镓QW / NW的AlGaAs接口电性能通过离轴电子全息定量表征。我们的研究结果表明,相当大的电子被限制在GaAs量子阱,留下大量的孔,在所述GaAs /的AlGaAs异质界面分布。此外,在与第一原理计算的组合,使带电荷的GaAs在/的AlGaAs接口弯曲再分配被计算,这与我们的实验符合良好。在该异质结构由于引入GaAs量子阱的也显露,从而导致相关的带隙的变化,从而导致在光致发光(PL)光谱蓝移的量子限制效应。这项工作提供了洞察包括QW的III-V族半导体纳米线的纳米级的电性能,其可以优化类似混合结构作为未来的光电器件的光棚。

著录项

  • 来源
  • 作者单位

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Ctr Electron Microscopy MOE Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Hubei Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Beijing Univ Posts &

    Telecommun State Key Lab Informat Photon &

    Opt Commun Beijing 100876 Peoples R China;

    Wuhan Univ Sch Phys &

    Technol Ctr Electron Microscopy MOE Key Lab Artificial Micro &

    Nanostruct Wuhan 430072 Hubei Peoples R China;

    Huazhong Univ Sci &

    Technol Wuhan Natl Lab Optoelect Ctr Nanoscale Characterizat &

    Devices Luoyu Rd 1037 Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号