首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Grasping pose estimation for SCARA robot based on deep learning of point cloud
【24h】

Grasping pose estimation for SCARA robot based on deep learning of point cloud

机译:基于点云深度学习的基于深度学习的疤痕机器人掌握姿势估计

获取原文
获取原文并翻译 | 示例

摘要

With the development of 3D measurement technology, 3D vision sensors and object pose estimation methods have been developed for robotic loading and unloading. In this work, an end-to-end deep learning method on point clouds, PointNetRGPE, is proposed to estimating the grasping pose of SCARA robot. In PointNetRGPE model, the point cloud and class number are fused into a point-class vector, and several PointNet-like networks are used to estimate the robot grasping pose, containing 3D translation and 1D rotation. Considering that rotational symmetry is very common in man-made and industrial environments, a novel architecture is introduced into PointNetRGPE to solve the pose estimation problem with rotational symmetry in the z-axis direction. Additionally, an experimental platform is built containing an industrial robot and a binocular stereo vision system, and a dataset with three subsets is set up. Finally, the PointNetRGPE is tested on the dataset, and the success rates of three subsets are 98.89%, 98.89%, and 94.44% respectively.
机译:随着3D测量技术的发展,已经开发了3D视觉传感器和对象姿态估计方法,用于机器人装载和卸载。在这项工作中,提出了一种在点云,PointNETRGPE上的端到端深度学习方法,以估计Scara机器人的抓握姿势。在PointNetRGPE模型中,点云和类号码融合到点类向量中,并且使用几个像素的网络用于估计包含3D翻译和1D旋转的机器人掌握姿势。考虑到旋转对称在人造和工业环境中是非常常见的,将一种新颖的架构引入到PointNetRGPE中,以解决Z轴方向上的旋转对称的姿势估计问题。此外,建立了一个实验平台,其中包含工业机器人和双目立体声视觉系统,并建立了具有三个子集的数据集。最后,在数据集上测试了PointNETRGPE,三个子集的成功率分别为98.89%,98.89%和94.44%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号