首页> 外文期刊>Signal processing >Linear and quadratic estimation using uncertain observations from multiple sensors with correlated uncertainty
【24h】

Linear and quadratic estimation using uncertain observations from multiple sensors with correlated uncertainty

机译:使用来自具有相关不确定性的多个传感器的不确定性观测值进行线性和二次估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, filtering algorithms are derived for the least-squares linear and quadratic estimation problems in linear systems with uncertain observations coming from multiple sensors with different uncertainty characteristics. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the Bernoulli random variables describing the uncertainty are correlated at consecutive sampling times but independent otherwise. The least-squares linear estimation problem is solved by using an innovation approach, and the quadratic estimation problem is reduced to a linear estimation one in a suitable augmented system. The performance of the linear and quadratic estimators is illustrated by a numerical simulation example wherein a scalar signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.
机译:本文针对具有不确定观测值的线性系统的最小二乘线性和二次估计问题,推导了滤波算法,该观测值来自具有不同不确定特性的多个传感器。假定在每个传感器处,在存在加性白噪声的情况下测量状态,并且描述不确定性的伯努利随机变量在连续的采样时间相关,而在其他情况下则独立。通过使用一种创新方法来解决最小二乘线性估计问题,并且在合适的扩充系统中将二次估计问题简化为线性估计问题。线性和二次估计器的性能通过一个数值模拟示例进行说明,其中标量信号是根据来自具有不同不确定性特征的两个传感器的相关不确定性观察值进行估计的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号