首页> 外文会议>Computational methods in science and engineering: advances in computational science >Estimation in Linear Systems Featuring Correlated Uncertain Observations Coming from Multiple Sensors
【24h】

Estimation in Linear Systems Featuring Correlated Uncertain Observations Coming from Multiple Sensors

机译:具有来自多个传感器的不确定相关信息的线性系统中的估计

获取原文
获取原文并翻译 | 示例

摘要

n this paper, the state least-squares linear estimation problem from correlated uncertain observations coming from multiple sensors is addressed. It is assumed that, at each sensor, the state is measured in the presence of additive white noise and that the uncertainty in the observations is characterized by a set of Bernoulli random variables which are only correlated at consecutive time instants. Assuming that the statistical properties of such variables are not necessarily the same for all the sensors, a recursive filtering algorithm is proposed, and the performance of the estimators is illustrated by a numerical simulation example wherein a signal is estimated from correlated uncertain observations coming from two sensors with different uncertainty characteristics.
机译:在本文中,解决了来自多个传感器的相关不确定观测值的状态最小二乘线性估计问题。假定在每个传感器处,在存在加性白噪声的情况下测量状态,并且观察结果的不确定性由仅在连续时间相关的一组伯努利随机变量来表征。假设这些变量的统计特性不一定对所有传感器都相同,则提出了一种递归滤波算法,并通过一个数值模拟示例说明了估计器的性能,其中,信号是根据来自两个传感器的相关不确定性观察来估计的具有不同不确定性特征的传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号