首页> 外文期刊>Radar, Sonar & Navigation, IET >Multi-scan smoothing for tracking manoeuvering target trajectory in heavy cluttered environment
【24h】

Multi-scan smoothing for tracking manoeuvering target trajectory in heavy cluttered environment

机译:多重扫描平滑技术可在杂乱无章的环境中跟踪机动目标的轨迹

获取原文
获取原文并翻译 | 示例

摘要

An automatic target tracking algorithm must be capable of dealing with an unknown number of targets and their trajectory behaviour inside the surveillance region. However, due to target motion uncertainties, heavily populated clutter measurements and low detection probabilities of targets, the smoothing algorithms often fail to detect the true number of target trajectories. In this study, the authors discussed some deficiencies and insignificances of existing smoothing algorithms and proposed a new smoothing data association based algorithm called fixed-interval integrated track splitting smoothing (ITS-S). The proposed algorithm employ smoothing data association algorithm and compared with existing smoothing algorithms outperform in terms of target trajectory accuracy and false-track discrimination (FTD). However, existing algorithms fail to generate smoothed target trajectory and provides insignificant FTD performance in such difficult environments as illustrated in this simulation study. The ITS-S shows improved smoothing performance compared with that of existing algorithms for a manoeuvering target tracking in a heavily populated cluttered environment and low detection probabilities.
机译:自动目标跟踪算法必须能够处理监视区域内未知数量的目标及其轨迹行为。然而,由于目标运动的不确定性,密集的杂波测量和目标的低检测概率,平滑算法通常无法检测到目标轨迹的真实数量。在这项研究中,作者讨论了现有平滑算法的一些不足和微不足道,并提出了一种新的基于平滑数据关联的算法,称为固定间隔集成磁道分割平滑(ITS-S)。提出的算法采用了平滑数据关联算法,并在目标轨迹精度和伪迹识别(FTD)方面与现有的平滑算法进行了比较。但是,现有的算法无法生成平滑的目标轨迹,并且在这种模拟研究中说明的这种困难环境中无法提供微不足道的FTD性能。与现有算法相比,ITS-S的平滑性能有所提高,可在人口稠密的混乱环境中实现机动目标跟踪,并且检测概率较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号