首页> 外文期刊>Quality Control, Transactions >Affinity Learning Via Self-Supervised Diffusion for Spectral Clustering
【24h】

Affinity Learning Via Self-Supervised Diffusion for Spectral Clustering

机译:通过自我监控扩散来学习光谱聚类

获取原文
获取原文并翻译 | 示例

摘要

Spectral clustering makes use of the spectrum of an input affinity matrix to segment data into disjoint clusters. The performance of spectral clustering depends heavily on the quality of the affinity matrix. Commonly used affinity matrices are constructed by either the Gaussian kernel or the self-expressive model with sparse or low-rank constraints. A technique called diffusion which acts as a post-process has recently shown to improve the quality of the affinity matrix significantly, by taking advantage of the contextual information. In this paper, we propose a variant of the diffusion process, named Self-Supervised Diffusion, which incorporates clustering result as feedback to provide supervisory signals for the diffusion process. The proposed method contains two stages, namely affinity learning with diffusion and spectral clustering. It works in an iterative fashion, where in each iteration the clustering result is utilized to calculate a pseudo-label similarity so that it can aid the affinity learning stage in the next iteration. Extensive experiments on both synthetic and real-world data have demonstrated that the proposed method can learn accurate and robust affinity, and thus achieves superior clustering performance.
机译:光谱簇利用输入关联矩阵的频谱到分段数据分成不相交的簇。光谱聚类的性能大量取决于亲和矩阵的质量。常用的亲和矩阵由高斯内核或具有稀疏或低秩约束的自富有态度模型构成的。通过利用上下文信息,最近被称为后工艺的扩散作为后工艺的扩散,以显着提高亲和矩阵的质量。在本文中,我们提出了一种名为自我监督扩散的扩散过程的变型,其将聚类结果作为反馈,为扩散过程提供监控信号。该方法包含两个阶段,即具有扩散和光谱聚类的亲和学习。它以迭代方式起作用,在每次迭代中,聚类结果用于计算伪标签相似性,以便它可以帮助下一次迭代中的亲和学习阶段。对合成和现实世界数据的广泛实验表明,所提出的方法可以学习准确和强大的亲和力,从而实现了卓越的聚类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号