首页> 外文期刊>Pattern recognition letters >A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
【24h】

A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering

机译:无监督的少量学习和聚类自我监督的深度学习框架

获取原文
获取原文并翻译 | 示例

摘要

The need to learn a good representation is a core problem central to AI. We present a self-supervised representation learning framework and demonstrate its use for few-shot classification and clustering. Our framework can be interpreted as repeatedly discovering new categories from learned embeddings and training a new embedding function with self-supervised signals to differentiate the discovered categories. In our framework, we first discover categories from unlabeled data. Next we post-process the previous partition results to remove outliers and derive prototypes of each category. We then construct few-shot learning tasks with previously selected data and augmented virtual data. Lastly, we iterative train the network through previous steps to learn the final representation. Our framework can considerably outperform previous baselines in unsupervised few-shot classification tasks on miniImageNet and Omniglot data sets. We also validate our learned representation on clustering tasks and demonstrate that our framework further improves upon the recent deep clustering methods. (c) 2021 Elsevier B.V. All rights reserved.
机译:学习良好代表的必要性是AI的核心问题。我们提出了一个自我监督的表示学习框架,并展示了它用于几次拍摄分类和聚类的用途。我们的框架可以解释为反复发现来自学习嵌入的新类别,并培训具有自我监控信号的新嵌入功能,以区分发现的类别。在我们的框架中,我们首先发现来自未标记数据的类别。接下来,我们在后续处理之前的分区结果删除了每个类别的异常值和派生原型。然后,我们使用先前选择的数据和增强虚拟数据构建几秒钟的学习任务。最后,我们通过先前的步骤迭代培训网络来学习最终的代表。我们的框架可以在MiniimAgeNet和Omniglot数据集中的无监督的少量分类任务中大大差异。我们还验证了我们对聚类任务的学习表现,并证明我们的框架进一步提高了最近的深层聚类方法。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号