首页> 外文会议>Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on >Affinity learning via self-diffusion for image segmentation and clustering
【24h】

Affinity learning via self-diffusion for image segmentation and clustering

机译:通过自扩散进行亲和力学习以进行图像分割和聚类

获取原文
获取原文并翻译 | 示例

摘要

Computing a faithful affinity map is essential to the clustering and segmentation tasks. In this paper, we propose a graph-based affinity (metric) learning method and show its application to image clustering and segmentation. Our method, self-diffusion (SD), performs a diffusion process by propagating the similarity mass along the intrinsic manifold of data points. Theoretical analysis is given to the SD algorithm and we provide a way of deriving the critical time stamp t. Our method therefore has nearly no parameter tuning and leads to significantly improved affinity maps, which help to greatly enhance the quality of clustering. In addition, we show that much improved image segmentation results can be obtained by combining SD with e.g. the normalized cuts algorithm. The proposed method can be used to deliver robust affinity maps for a range of problems.
机译:计算真实的亲和力图对于聚类和分段任务至关重要。在本文中,我们提出了一种基于图的亲和度(度量)学习方法,并展示了其在图像聚类和分割中的应用。我们的方法自扩散(SD)通过沿数据点的固有流形传播相似质量来执行扩散过程。对SD算法进行了理论分析,并提供了一种导出临界时间戳t的方法。因此,我们的方法几乎没有参数调整,并导致显着改善的亲和力图,这有助于大大提高聚类的质量。另外,我们表明,通过将SD与例如图像处理相结合,可以获得更好的图像分割结果。归一化割算法。所提出的方法可以用于为一系列问题提供鲁棒的亲和力图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号