首页> 外文期刊>Power Systems, IEEE Transactions on >A Model Predictive Control Approach for Low-Complexity Electric Vehicle Charging Scheduling: Optimality and Scalability
【24h】

A Model Predictive Control Approach for Low-Complexity Electric Vehicle Charging Scheduling: Optimality and Scalability

机译:低复杂度电动汽车充电调度的模型预测控制方法:最优性和可扩展性

获取原文
获取原文并翻译 | 示例

摘要

With the increasing adoption of plug-in electric vehicles (PEVs), it is critical to develop efficient charging coordination mechanisms that minimize the cost and impact of PEV integration to the power grid. In this paper, we consider the optimal PEV charging scheduling, where the noncausal information about future PEV arrivals is not known in advance, but its statistical information can be estimated. This leads to an “online” charging scheduling problem that is naturally formulated as a finite-horizon dynamic programming with continuous state space and action space. To avoid the prohibitively high complexity of solving such a dynamic programming problem, we provide a model predictive control (MPC)-based algorithm with computational complexity O(T3), where T is the total number of time stages. We rigorously analyze the performance gap between the near-optimal solution of the MPC-based approach and the optimal solution for any distributions of exogenous random variables. Furthermore, our rigorous analysis shows that when the random process describing the arrival of charging demands is first-order periodic, the complexity of the proposed algorithm can be reduced to O(1), which is independent of T. Extensive simulations show that the proposed online algorithm performs very closely to the optimal online algorithm. The performance gap is smaller than 0.4% in most cases.
机译:随着插电式电动汽车(PEV)的日益普及,至关重要的是开发有效的充电协调机制,以最大程度地降低PEV集成对电网的成本和影响。在本文中,我们考虑了最优的PEV充电调度,其中关于未来PEV到来的非因果信息事先未知,但可以估算其统计信息。这导致了一个“在线”充电调度问题,该问题自然地被公式化为具有连续状态空间和动作空间的有限水平动态编程。为了避免解决这种动态规划问题的过高的复杂性,我们提供了一种基于模型预测控制(MPC)的算法,其计算复杂度为O(T3),其中T是时间段的总数。我们严格分析了基于MPC的方法的最佳解决方案与外生随机变量的任何分布的最佳解决方案之间的性能差距。此外,我们的严格分析表明,当描述充电需求到达的随机过程为一阶周期性时,所提出算法的复杂度可以降低为O(1),而与T无关。广泛的仿真表明,所提出的算法在线算法的性能与最佳在线算法非常接近。在大多数情况下,性能差距小于0.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号