首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning and feature selection in stereo matching
【24h】

Learning and feature selection in stereo matching

机译:立体声匹配中的学习和特征选择

获取原文
获取原文并翻译 | 示例

摘要

We present a novel stereo matching algorithm which integrates learning, feature selection, and surface reconstruction. First, a new instance based learning (IBL) algorithm is used to generate an approximation to the optimal feature set for matching. In addition, the importance of two separate kinds of knowledge, image dependent knowledge and image independent knowledge, is discussed. Second, we develop an adaptive method for refining the feature set. This adaptive method analyzes the feature error to locate areas of the image that would lead to false matches. Then these areas are used to guide the search through feature space towards maximizing the class separation distance between the correct match and the false matches. Third, we introduce a self-diagnostic method for determining when apriori knowledge is necessary for finding the correct match. If the a priori knowledge is necessary then we use a surface reconstruction model to discriminate between match possibilities. Our algorithm is comprehensively tested against fixed feature set algorithms and against a traditional pyramid algorithm. Finally, we present and discuss extensive empirical results of our algorithm based on a large set of real images.
机译:我们提出了一种新颖的立体声匹配算法,该算法集成了学习,特征选择和曲面重建功能。首先,使用新的基于实例的学习(IBL)算法来生成用于匹配的最佳特征集的近似值。另外,讨论了两种独立的知识的重要性,即图像相关知识和图像独立知识。其次,我们开发了一种自适应方法来细化特征集。这种自适应方法分析特征误差,以定位可能导致错误匹配的图像区域。然后将这些区域用于引导搜索通过特征空间,以最大化正确匹配和错误匹配之间的类分隔距离。第三,我们介绍了一种自我诊断方法,用于确定何时需要先验知识才能找到正确的匹配项。如果先验知识是必需的,则我们使用表面重建模型来区分匹配可能性。我们的算法已针对固定特征集算法和传统金字塔算法进行了全面测试。最后,我们提出并讨论了基于大量真实图像的算法的广泛经验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号