首页> 外文会议>Image understanding workshop >Learning and Feature Selection in Stereo Matching
【24h】

Learning and Feature Selection in Stereo Matching

机译:立体匹配中的学习和特征选择

获取原文
获取原文并翻译 | 示例

摘要

We present a novel stereo matching algorithm which integrates learning, feature selection, and surface reconstruction. First, an instance based learning (IBL) algorithm is used to generate an approximation to the optimal feature set for matching. Second, we develop an adaptive method for refining the feature set. This adaptive method analyzes the feature error to locate the sources of mismatches. Then the search through feature space for maximizing the class separation function is guided by eliminating the sources of mismatches. Third, we introduce a method for determining when apriori knowledge is necessary for discriminating between the correct match and the sources of mismatches. If the apriori knowledge is necessary then we use a surface reconstruction model to discriminate between match possibilities. We performed comprehensive comparison of our algorithm and a traditional pyramid algorithm on a wide set of real images. Finally, extensive empirical results of our algorithm based on real images are presented.
机译:我们提出了一种新颖的立体声匹配算法,该算法集成了学习,特征选择和曲面重建功能。首先,基于实例的学习(IBL)算法用于生成最佳特征集的近似值以进行匹配。其次,我们开发了一种自适应方法来细化特征集。这种自适应方法分析特征误差以找到不匹配的根源。然后,通过消除不匹配的来源,引导用于最大化类分离功能的特征空间搜索。第三,我们介绍一种确定何时需要先验知识来区分正确匹配和不匹配来源的方法。如果先验知识是必要的,则我们使用表面重建模型来区分匹配可能性。我们对各种真实图像进行了算法和传统金字塔算法的全面比较。最后,给出了基于真实图像的算法的广泛经验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号