首页> 外文期刊>IEEE Transactions on Image Processing >Feature Augmentation for Learning Confidence Measure in Stereo Matching
【24h】

Feature Augmentation for Learning Confidence Measure in Stereo Matching

机译:立体匹配中学习信心度量的特征增强

获取原文
获取原文并翻译 | 示例

摘要

Confidence estimation is essential for refining stereo matching results through a post-processing step. This problem has recently been studied using a learning-based approach, which demonstrates a substantial improvement on conventional simple non-learning based methods. However, the formulation of learning-based methods that individually estimates the confidence of each pixel disregards spatial coherency that might exist in the confidence map, thus providing a limited performance under challenging conditions. Our key observation is that the confidence features and resulting confidence maps are smoothly varying in the spatial domain, and highly correlated within the local regions of an image. We present a new approach that imposes spatial consistency on the confidence estimation. Specifically, a set of robust confidence features is extracted from each superpixel decomposed using the Gaussian mixture model, and then these features are concatenated with pixel-level confidence features. The features are then enhanced through adaptive filtering in the feature domain. In addition, the resulting confidence map, estimated using the confidence features with a random regression forest, is further improved through K-nearest neighbor based aggregation scheme on both pixel- and superpixel-level. To validate the proposed confidence estimation scheme, we employ cost modulation or ground control points based optimization in stereo matching. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches on various benchmarks including challenging outdoor scenes.
机译:置信度估计对于通过后处理步骤细化立体声匹配结果至关重要。最近使用基于学习的方法研究了这个问题,该方法证明了对传统的基于简单非学习方法的实质性改进。但是,单独估计每个像素的置信度的基于学习的方法的公式忽略了置信度图中可能存在的空间相干性,因此在具有挑战性的条件下提供了有限的性能。我们的主要观察结果是置信度特征和生成的置信度图在空间域内平滑变化,并且在图像的局部区域内高度相关。我们提出了一种在置信度估计上强加空间一致性的新方法。具体而言,从使用高斯混合模型分解的每个超像素中提取一组鲁棒的置信度特征,然后将这些特征与像素级的置信度特征连接在一起。然后通过特征域中的自适应过滤来增强特征。此外,通过置信度特征与随机回归森林进行估计的结果置信度图通过像素级和超像素级的基于K近邻的聚合方案得到了进一步改善。为了验证提出的置信度估计方案,我们在立体声匹配中采用了基于成本调制或地面控制点的优化方法。实验结果表明,所提出的方法在各种基准(包括具有挑战性的室外场景)上均优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号