首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Depth Map Calculation for a Variable Number of Moving Objects using Markov Sequential Object Processes
【24h】

Depth Map Calculation for a Variable Number of Moving Objects using Markov Sequential Object Processes

机译:使用马尔可夫顺序对象过程对可变数量的移动对象进行深度图计算

获取原文
获取原文并翻译 | 示例

摘要

We advocate the use of Markov sequential object processes for tracking a variable number of moving objects through video frames with a view towards depth calculation. A regression model based on a sequential object process quantifies goodness of fit; regularization terms are incorporated to control within and between frame object interactions. We construct a Markov chain Monte Carlo method for finding the optimal tracks and associated depths and illustrate the approach on a synthetic data set as well as a sport sequence.
机译:我们提倡使用马尔可夫顺序对象过程来通过视频帧跟踪可变数量的运动对象,以进行深度计算。基于顺序对象过程的回归模型可量化拟合优度;正则化术语被并入以控制帧对象交互之内和之间。我们构造了一个马尔可夫链蒙特卡罗方法来寻找最佳轨迹和相关深度,并说明了在综合数据集以及运动序列上的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号