首页> 外文会议>European Conference on Computer Vision >Detecting Parallel-Moving Objects in the Monocular Case Employing CNN Depth Maps
【24h】

Detecting Parallel-Moving Objects in the Monocular Case Employing CNN Depth Maps

机译:在采用CNN Depth Maps中检测单眼盒中的平行移动物体

获取原文

摘要

This paper presents a method for detecting independently moving objects (IMOs) from a monocular camera mounted on a moving car. We use an existing state of the art monocular sparse visual odometry/SLAM framework, and specifically attack the notorious problem of identifying those IMOs which move parallel to the ego-car motion, that is, in an 'epipolar-conformant' way. IMO candidate patches are obtained from an existing CNN-based car instance detector. While crossing IMOs can be identified as such by epipolar consistency checks, IMOs that move parallel to the camera motion are much harder to detect as their epipolar conformity allows to misinterpret them as static objects in a wrong distance. We employ a CNN to provide an appearance-based depth estimate, and the ambiguity problem can be solved through depth verification. The obtained motion labels (IMO/static) are then propagated over time using the combination of motion cues and appearance-based information of the IMO candidate patches. We evaluate the performance of our method on the KITTI dataset.
机译:本文介绍了一种从安装在移动车上的单像相机中检测独立移动物体(IMOS)的方法。我们使用现有的艺术单眼稀疏视觉测量仪/ SLAM框架的状态,具体攻击识别与自助式汽车运动平行的那些IMOS的臭名昭着的问题,即以“骨头符合的方式”。 IMO候选补丁是从现有的基于CNN的汽车实例检测器获得的。虽然横穿IMOS可以通过ePipolar一致性检查识别,并行于摄像机运动的IMOS更难被检测,因为它们的末极符合性允许将它们误解为错误距离的静态物体。我们使用CNN来提供基于外观的深度估计,并且可以通过深度验证来解决模糊性问题。然后使用IMO候选补丁的运动提示和基于外观信息的组合随着时间的推移传播所获得的运动标签(IMO /静态)。我们评估我们在Kitti DataSet上的方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号