首页> 外文期刊>Neurocomputing >CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms
【24h】

CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms

机译:CARM:通过审查表示学习和在线平台中的历史评级行为的信心感知推荐模型

获取原文
获取原文并翻译 | 示例

摘要

The recommendation systems in the online platforms often suffer from the rating data sparseness and information overload issues. Previous studies on this topic often leverage review information to construct an accurate user/item latent factor. To address this issue, we propose a novel confidence-aware recommender model via review representation learning and historical rating behavior in this article. It is motived that ratings are consistent with reviews in terms of user preferences, and reviews often contain misleading comments (e.g., fake good reviews, fake bad reviews). To this end, the interaction latent factor of user and item in the framework is constructed by exploiting review information interactivity. Then, the confidence matrix, which measures the relationship between the rating outliers and misleading reviews, is employed to further improve the model accuracy and reduce the impact of misleading reviews on the model. Furthermore, the loss function is constructed by maximum a posteriori estimation theory. Finally, the mini-batch gradient descent algorithm is introduced to optimize the loss function. Experiments conducted on four real-world datasets empirically demonstrate that our proposed method outperforms the state-of-the-art methods. The proposed method also further promotes the application in learning resource adaptation. The source Python code will be available upon request. (c) 2021 Elsevier B.V. All rights reserved.
机译:在线平台中的推荐系统经常遭受评级数据稀疏性和信息过载问题。以前关于本主题的研究经常利用审查信息来构建准确的用户/项目潜在因子。为了解决这个问题,我们通过本文中的审查表示学习和历史评级行为提出了一种新的信心感知推荐模型。它有动力,评级与用户偏好方面的审查一致,评论通常包含误导性评论(例如,假的好评,假不好评论)。为此,通过利用审查信息交互来构建框架中用户和项目的交互潜在因子。然后,衡量评级异常值与误导性评论之间关系的置信矩阵,用于进一步提高模型准确性,并减少对模型的误导性评论的影响。此外,通过最大的后验估计理论构建损耗功能。最后,引入了迷你批量梯度下降算法以优化损耗功能。在四个现实世界数据集上进行的实验证明我们所提出的方法优于最先进的方法。该方法还进一步促进了学习资源适应的应用。源Python代码可根据要求提供。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第30期|283-296|共14页
  • 作者单位

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China;

    Harbin Inst Technol Shenzhen Dept Control Sci & Engn Shenzhen 518055 Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China;

    Cent China Normal Univ Natl Engn Res Ctr E Learning Wuhan 430079 Peoples R China|Northeastern State Univ Dept Math & Comp Sci Tahlequah OK 74464 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender system; Representation learning; Matrix factorization; Interactivity; Confidence matrix; Learning resource adaptation;

    机译:推荐系统;表示学习;矩阵分解;交互;置信矩阵;学习资源适应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号