首页> 外文期刊>Neurocomputing >Joint representation learning with ratings and reviews for recommendation
【24h】

Joint representation learning with ratings and reviews for recommendation

机译:与评级和评论的联合代表学习建议

获取原文
获取原文并翻译 | 示例

摘要

Recommender system is an important technique to find the information that the users may be interested by their feedbacks. However, it is still a challenge to model the preference of users due to the sparsity of user feedbacks. To alleviate this problem, many methods are developed by extracting information from various kinds of auxiliary information that are related to the users. In the auxiliary information, review is the popular one, since it can reflect both user preferences and item characteristics. Moreover, the review can generate plausible recommendation explanations in the recommendation results. In this paper, we propose a hybrid deep collaborative filtering model that jointly learns rating embedding and textural feature from ratings and reviews respectively. Specifically, two embedding layers are employed to learn rating embedding for users and items based on the interactions, and two attention-based GRU networks attempt to learn context-aware representation as textural feature for users and items from reviews. To leverage the contribution between rating embedding and textual feature and obtain the fused features for users and items, a proposed gating mechanism is used. Then an interaction-learning layer is adopted to learn the user and item interaction information based on the fused user and item features. The prediction score is obtained with the factorization machine. Experimental results on six real-world datasets demonstrate the superior performance of the proposed method over several state-of-the-art methods.(c) 2020 Elsevier B.V. All rights reserved.
机译:推荐系统是找到用户对其反馈感兴趣的信息的重要技术。然而,由于用户反馈的稀疏性,模拟了用户的偏好仍然是一项挑战。为了减轻这个问题,通过从与用户相关的各种辅助信息中提取信息来开发许多方法。在辅助信息中,回顾是流行的,因为它可以反映用户偏好和项目特征。此外,审查可以在建议结果中产生合理的推荐解释。在本文中,我们提出了一个混合的深度协同过滤模型,共同学习评级嵌入和纹理特征,分别从评级和评论点评。具体地,使用两个嵌入层来学习基于交互的用户和项目的评级嵌入,以及两个关注的GRU网络试图将上下文感知表示作为来自评论的用户和项目的纹理功能。为了利用评级嵌入和文本功能之间的贡献,并获得用户和项目的融合功能,使用了一种提出的门控机制。然后采用交互式学习层来基于融合用户和项目特征来学习用户和项目交互信息。通过分解机获得预测得分。六个现实数据集的实验结果证明了在几种最先进的方法上提出了拟议方法的卓越性能。(c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第15期|181-190|共10页
  • 作者单位

    Wuhan Univ Sch Comp Sci Natl Engn Res Ctr Multimedia Software Wuhan Peoples R China|Wuhan Univ Inst Artificial Intelligence Wuhan Peoples R China|Wuhan Univ Sch Comp Sci Wuhan Peoples R China;

    Wuhan Univ Sch Comp Sci Wuhan Peoples R China;

    Xia Inc Wuhan Peoples R China;

    Xia Inc Wuhan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender system; Gated Recurrent Unit; Attention mechanism; Deep neural network;

    机译:推荐系统;门控复发单位;注意机制;深神经网络;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号