首页> 外文期刊>Neurocomputing >Robot learning system based on dynamic movement primitives and neural network
【24h】

Robot learning system based on dynamic movement primitives and neural network

机译:基于动态运动基元和神经网络的机器人学习系统

获取原文
获取原文并翻译 | 示例

摘要

In the process of Human-robot skill transfer, we require the robot to reproduce the trajectory of teacher and expect that the robot can generalize the learned trajectory. For the trajectory after generalization, we expect that the robot arm can accurately track. However, because the model of the robot can not be accurately obtained, some researchers have proposed using a neural network to approximate the unknown term. The parameters of the traditional RBF neural network are usually selected through the empirical and trial-and-error method, which maybe biased and inefficient. In addition, due to the end-effector of the mechanical arm trajectory will be constantly changing according to the needs of the task, when the neural network of compact set cannot contain the whole input vector, the neural network cannot achieve the ideal approximation effect. In this paper, the broad neural network is used to approximate the unknown terms of the robot. This method can reuse the motion controller that has been learned and complete other motions in the robot operating space without relearning its weight parameters. In this paper, the effectiveness of the proposed method is proved by the ultrasound scanning task. (c) 2021 Elsevier B.V. All rights reserved.
机译:在人体机器人技能转移过程中,我们要求机器人再现教师的轨迹,并期望机器人可以概括学习的轨迹。对于泛化后的轨迹,我们希望机器人臂可以准确地追踪。然而,因为无法准确获得机器人的模型,所以一些研究人员用神经网络提出以近似未知术语。传统RBF神经网络的参数通常通过经验和试验和误差方法选择,这些方法可能偏置和低效。另外,由于机械臂轨迹的末端执行器根据任务的需求不断变化,当紧凑型的神经网络不能包含整个输入向量时,神经网络无法达到理想的近似效果。在本文中,广泛的神经网络用于近似机器人的未知术语。该方法可以重用已经学习的运动控制器并在机器人操作空间中完成其他动作而不重新安装其权重参数。本文通过超声扫描任务证明了所提出的方法的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号