首页> 外文学位 >Advanced controller design using neural networks for nonlinear dynamic systems with application to micro/nano robotics.
【24h】

Advanced controller design using neural networks for nonlinear dynamic systems with application to micro/nano robotics.

机译:使用神经网络对非线性动力学系统进行高级控制器设计,并应用于微/纳米机器人技术。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation focuses on neural network (NN) control designs for nonlinear systems with application to micro/nano robotic. Critical problems in nano scale including thermal drift are also addressed. This dissertation is given in the form of several papers.; To start with, a suite of novel controllers is developed in the first paper for the manipulation of microscale objects in a micro-electromechanical system (MEMS). The proposed robust and the adaptive neural network controllers overcome the unknown contact dynamics and ensure their performance in the presence of actuator constraints.; Next, in the second paper, thermal drift, as the major source of uncertainty in nano scale, is discussed and compensated by using block based phase-correlation method. This consideration is needed to realize a truly automatic manipulation of nano objects.; Subsequently, the third paper uses the drift compensator from the second paper to develop a NN-based adaptive force design for nanomanipulation to accommodate the unknown dynamics, while maintaining a constant force applied on the nano sample.; In order to address the optimality in terms of a standard quadratic cost function, the fourth paper introduces a reinforcement learning-based controller for the nanoscale manipulation by considering the Bellman equation. This controller consists of an action network and a critic network. Both of the networks are trained in an online fashion with the updating algorithms derived from dynamic programming (DP).; To make our scheme applicable to a more general class of affine systems with immeasurable states, an output feedback design with an extra NN observer is introduced in the final paper while relaxing the separation principle. By using the Lyapunov approach, the stability of the above mentioned controller designs are demonstrated.
机译:本文主要研究非线性系统的神经网络控制设计及其在微/纳米机器人上的应用。还解决了纳米级的关键问题,包括热漂移。本文以多篇论文的形式给出。首先,在第一篇论文中开发了一套新颖的控制器,用于在微机电系统(MEMS)中操纵微型物体。所提出的鲁棒和自适应神经网络控制器克服了未知的接触动力学特性,并在存在执行器约束的情况下确保了其性能。接下来,在第二篇论文中,讨论了热漂移作为纳米级不确定性的主要来源,并使用基于块的相位相关方法进行了补偿。为了真正实现纳米物体的自动操纵,需要考虑这一点。随后,第三篇论文使用第二篇论文中的漂移补偿器来开发基于NN的自适应力设计,用于纳米操纵,以适应未知的动力学,同时保持施加在纳米样品上的力恒定。为了解决标准二次成本函数方面的最优性,第四篇论文通过考虑Bellman方程引入了一种基于增强学习的纳米级操纵控制器。该控制器由一个动作网络和一个评论网络组成。这两个网络都以在线方式进行培训,并使用从动态编程(DP)衍生的更新算法。为了使我们的方案适用于状态不可估量的仿射系统的更通用类别,在最后的论文中引入了带有额外的NN观察器的输出反馈设计,同时放宽了分离原理。通过使用李雅普诺夫方法,证明了上述控制器设计的稳定性。

著录项

  • 作者

    Yang, Qinmin.;

  • 作者单位

    University of Missouri - Rolla.;

  • 授予单位 University of Missouri - Rolla.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:39:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号