首页> 美国政府科技报告 >Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer
【24h】

Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer

机译:非线性电路和神经网络:TeraOps CNN动态阵列超级计算机的芯片实现和应用

获取原文

摘要

The algorithm for quadratic global optimization performed by a cellular neural network (CNN) with a slowly varying slope of the output characteristic is analyzed. It is shown that the only CNN which finds the global minimum of a quadratic function for any values of the input parameters is the network composed by only two cells. If the dimension is higher than two, even the CNN described by the simplest one-dimensional space-invariant template A=A(exp 1), A (exp 0), A (exp 1), fails to find the global minimum in a subset of the parameter space. Extensive simulations show that the CNN described by the above three-element template works correctly within several parameter ranges; however, if the parameters are chosen according to a random algorithm, the error rate increases with the number of cells.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号