首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives
【24h】

Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives

机译:基于自适应神经控制和动态运动原语的机器人学习系统

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an enhanced robot skill learning system considering both motion generation and trajectory tracking. During robot learning demonstrations, dynamic movement primitives (DMPs) are used to model robotic motion. Each DMP consists of a set of dynamic systems that enhances the stability of the generated motion toward the goal. A Gaussian mixture model and Gaussian mixture regression are integrated to improve the learning performance of the DMP, such that more features of the skill can be extracted from multiple demonstrations. The motion generated from the learned model can be scaled in space and time. Besides, a neural-network-based controller is designed for the robot to track the trajectories generated from the motion model. In this controller, a radial basis function neural network is used to compensate for the effect caused by the dynamic environments. The experiments have been performed using a Baxter robot and the results have confirmed the validity of the proposed methods.
机译:本文提出了一种兼顾运动生成和轨迹跟踪的增强型机器人技能学习系统。在机器人学习演示期间,动态运动原语(DMP)用于对机器人运动进行建模。每个DMP包含一组动态系统,这些系统可以增强所生成的向目标运动的稳定性。高斯混合模型和高斯混合回归被集成以提高DMP的学习性能,从而可以从多个演示中提取更多技能。从学习的模型生成的运动可以在空间和时间上缩放。此外,还为机器人设计了基于神经网络的控制器,以跟踪从运动模型生成的轨迹。在该控制器中,使用了径向基函数神经网络来补偿由动态环境引起的影响。实验已使用Baxter机器人进行,结果证实了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号