首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural Network Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems With Output Constraints and Event-Triggered Inputs
【24h】

Neural Network Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems With Output Constraints and Event-Triggered Inputs

机译:输出约束和事件触发输入的不确定MIMO非线性系统的神经网络自适应跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This article is concerned with a neural adaptive tracking control scheme for a class of multiinput and multioutput (MIMO) nonaffine nonlinear systems with event-triggered mechanisms, which include the fixed thresholds, triggering control inputs, and decreasing functions of tracking errors. Unlike the existing results of nonaffine nonlinear controller decoupling, a novel nonlinear multiple control inputs separated design method is proposed based on the mean-value theorem and the Taylor expansion technique. By this way, a weaker condition of nonlinear decoupling is provided to instead of the previous ones. Then, introducing a prescribed performance barrier Lyapunov function (PPBLF) and using neural networks (NNs), the presented event-triggered controller can maintain better tracking performance and effectively alleviate the computation burden of the communication procedure. Furthermore, it is proved that all the closed-loop signals are bounded and the system output tracking errors are confined within the prescribed bounds. Finally, the simulation results are given to demonstrate the validity of the developed control scheme.
机译:本文涉及具有具有事件触发机制的一类多量和多输出(MIMO)非游行非线性系统的神经自适应跟踪控制方案,其包括固定阈值,触发控制输入和降低跟踪误差的功能。与非共和非线性控制器去耦的现有结果不同,基于平均值定理和泰勒膨胀技术提出了一种新颖的非线性多控制输入分离设计方法。通过这种方式,提供了非线性去耦的较弱条件,而不是先前的解耦。然后,引入规定的性能屏障Lyapunov函数(PPBLF)并使用神经网络(NNS),所呈现的事件触发的控制器可以保持更好的跟踪性能,并有效地减轻通信过程的计算负担。此外,证明了所有闭环信号被界定,并且系统输出跟踪误差限制在规定的边界内。最后,给出了仿真结果来证明开发控制方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号