首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint
【24h】

Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

机译:具有规定性能约束的机械臂神经自适应反步控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods.
机译:本文提出了一种由电液致动器驱动的两自由度机械手的自适应神经网络(NN)控制。为了将系统输出限制在规定的性能约束中,设计了加权性能函数,以确保关节角以所需的精度动态和稳定地跟踪误差。然后,构造了径向基函数神经网络,以通过传统的反步控制(TBC)训练机械手的未知模型动力学,并获得初步估计的模型,该模型可以替代反步迭代中的已知动力学。此外,采用自适应估计定律对每个训练节点的权重进行自调整,并且对估计的模型进行在线优化以增强NN控制器的鲁棒性。通过比例模拟和TBC方法的对比仿真和实验结果验证了所提出控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号